RAILBOT: A Railway (IRCTC) Chatbot

Sahaya Sakila.V¹, Akshat Shrivastava², Md Arman Ansari³, Laxmi Kanta Kar⁴, Mukul Kumar⁵
Assistant Professor¹, Student², ³, ⁴, ⁵
Department of CSE
SRM IST, Ramapuram, Chennai, India

Abstract:
Chatbots are in high demand in today’s industry world. It presents a new way for individuals to interact with computer systems. Traditionally, to get a question answered by a software program involved using a search engine or filling out a form. It allows a user to simply ask questions in the same manner that they would address a human. The technology at the core of the rise of the chatbot is natural language processing (“NLP”). It can be improved by integrating it into the organization’s enterprise software, allowing more personal questions to be answered. The platforms where chatbots are deployed include Facebook Messenger, Skype, and Slack, Telegram. This paper successfully explained and implemented a chatbot which can be used to get some basic information related to Indian Railway such as PNR, train status and Seat Availability, etc. It saves the time of the user as they can directly fetch the information while conversing with the Chatbot using text or voice in the above mentioned deployed methods. This new proposed system will help the common passengers and visually impaired people.

Keyword: Chatbot, NLP, Facebook Messenger, Computer software, Search engine.

I. INTRODUCTION

Indian Railways is the fourth largest railway network in the world, transporting millions of passengers across the length and breadth of the country. Equally mind boggling is the traffic on the web portal for booking train tickets, fetching PNR, live train status, Indian Railway Catering and Tourism Corporation (IRCTC). An average of 13 lakh tickets are booked per day. Over 1 million people visit the site to check their ticket status. While there are certain other travel aggregator sites that allow users to book train tickets, IRCTC is still the preferred method. Despite its shabby looks, it gets the work done. Besides booking ticket, some of the most commonly performed actions by travellers are Check the Passenger Name Record (PNR) status also known as ticket status, check if a waitlisted ticket has been confirmed, check running status of train, In India trains run late, passengers just want to know by how much and check the train schedule, which waste time of the passengers. Even to get the above-mentioned information from an application using platforms like Android and iOS, the user has to download an application which consumes internet bandwidth as well as waste time. Thus, the passengers can save their time and internet data by using the Chatbot by just messaging using app such as Facebook Messenger, Telegram, Google Assistant, Skype which is generally pre-installed.

II. LITERATURE SURVEY

In this section we discuss the different methodologies review or literature review and motivation outcomes from it.

A. Android Based Educational Chatbot for Visually Impaired People

The purpose of the mentioned android application is to provide educational based Chatbot for visually impaired people. It will give an answer to the educational based queries asked by the visually impaired people. They can easily launch the application with the help of google voice search. Once the application is open, it will give a voice instruction to use an application. Output will be provided in voice form as well as in text form. So normal people can also use this application.

B. Artificial Intelligence Applied to Challenges in the Fields of Operations and Customer Support

Traditionally, Mastercard has been seen as simply a payment processor, and while that remains a large part of the business Mastercard also offers hundreds of products to financial institutions and others in its ecosystem around the world. Consequently, there is a need for large operations and customer support teams. Their systems accumulate data and, in this paper, they present four different examples of applying Artificial Intelligence to this data to solve business problems.

C. Climebot: An Argumentative Agent For Climate Change

While climate experts have agreed that global warming is real, this consensus has not reached all the society levels. Our aim is to develop a conversational agent able to explain issues related to global warming. The developed chatbot relies on textual entailment to identify the best answer for a statement conveyed by a human agent. To enhance the conversational capabilities, they employed the technical instrumentation provided by the APLAI framework. To exploit domain knowledge, the agent uses climate change ontologies converted into an adequate format for the APLAI model. Hence, we developed a Climebot, which is an argumentative agent for climate change based on ontologies and textual entailment.

D. Executable Semantics of Recursively Nestable Dialog Flow Specifications for Web Application

Information systems for the support of complex business process are often equipped with web-based front-ends to allow
convenient user access. To produce executable specifications of the users’ interactions with such web-based applications, we use a visual language that enables developers to model their complex dialog structures. In this paper, we introduce the formal semantics of the core constructs of this. Dialog Flow Notation: its syntax in terms of invariants about the permitted elements and their relations and show how any words of the language (i.e. any syntactically correct dialog bow specifications) can be mapped to a deterministic pushdown automaton whose behavior dense the notation’s semantics. This gives us and other tool developers a formal basis for the design and implementation of tools and frameworks that mirror the precise meaning of all DFN constructs.

E. Study on the Public Information Service Systems of Railway Industry
As we enter the 21st century, we experience one of the most important changes in our lives—information technology has been the important resource in the modern scientific and technology competition. So, the tide of Railway Informatization is increasingly rising. Railway information service system is the strategic resource element in the course of informatization. But railway information service in our country is not perfect yet, especially the information Service for the public. This paper first focus on the current situation of public information service in China, then proposed an information service system for railway industry to enhance the efficiency and transparency of information transmission. and then give some advices on how to operate the information service system to facilitate the information transmission in railway industry.

F. Home Automation using IoT and a Chatbot using Natural Language Processing
Home automation - controlling the fans, lights and other electrical appliances in a house using Internet of things is widely preferred in recent days. In this paper, we propose web application using which the fans, lights and other electrical appliances can be controlled over the Internet. The important features of the web application is that firstly, we have a chatbot algorithm such that the user can text information to control the functioning of the electrical appliances at home. The messages sent using the chatbot is processed using Natural Language processing techniques. Secondly, any device connected to the local area network of the house can control the devices and other appliances in the house. Thirdly, the web application used to enable home automation also has a security feature that enables certain users to access the application. And finally, it also has a functionality of sending an email alert when intruder is detected using motion sensors.

III. REQUIREMENT
The requirement for this project include some software specifications which are:

1. Heroku server- This is an open server which can be used to create the link between the chatbot and railway API.
2. Heroku CLI & Git – This is a command line interface for working and deploying the local repository to the Heroku server which take the help of Git or Github desktop.
3. Python IDE- As the backend is programmed in Python, therefore this IDE helps to script and debug the test.py file for fetching the JSON from Railway API and getting it back to the chatbot using webhook.
4. Dialog Flow (API.ai) - This online service allows us to design an Artificial Intelligence Chatbot through defining the intent/activity and entity and fetching the information from Heroku using fulfillment/webhook.
5. Facebook Developer Page or token- To enable this chatbot to be used by the passengers, the administrator has to get access to Facebook Developer platform or any other required messenger token for deploying the chatbot into their application.
6. Facebook Messenger/Telegram/Slack-Enables the user to message the input through keyboard and mic in the form of voice and text and get the output in the same two formats.

IV. SYSTEM ARCHITECTURE

Figure 1. System Architecture

1. Facebook Messenger/Slack/Telegram/Google Assistant
Enable the user to give the input through keyboard and mic in the form of voice and text and get the output in the same two formats.

1.1) Input- Example- To get the PNR details the user can give the input as “PNR 85761234”
1.2) Output- Example- The above query given in the input module will be responded as “PNR 85761234, NAME-AKSHAT SHRIVASTAV, DOJ-1/1/2018, TRAIN NO.-13552, CUR STAT- RLWL/051”.

Figure 2. User Input and Output

2. DialogFlow(API.ai) -
This online service allows us to design a rich Artificial Intelligence Chatbot through defining the intent/activity and entity.

2.1) Intent- Defines the activity which is performed by identifying the query given by the user. Intent is the described activity defined in the dialog flow. It can fetch the information from webhook using fulfilments.
2.2) Entity- The database of the required real-world object that is provided by the developers.
2.3) Fulfillment- The intent which has a particular action name can use the fulfillment for connecting the webhook with the Heroku server.

3. Backend-
The Backend that is used to connect and fetch the information between the Railway API and dialog flow.
3.1) Heroku server- This is an open server which is used to create an application to store the backend database and creating the link between the chatbot and railway API.
3.2) Heroku CLI & Git – This is a command line interface for deploying and debugging the test.py to the Heroku server which take the help of Git or Github desktop. This server enables us to use Heroku logs and deploying methods.
3.3) Python- The backend is programmed using Python version 2.7 and pip. This is used to fetch the JSON object from the Railway API and responding to the Dialogflow using webhook, flask.

4. Railway API -
Responsible for providing the information as JSON object like PNR status, Train between the stations, running status, etc. The module works with a unique API key provided by API providers such as erail.in and railwayapi.com.

V. PROPOSED SYSTEM

The chatbot will be fast and concise. It is dummy friendly. It gives confirmation of the user query eliminating misunderstanding. The conversational interface of a chatbot is suited ideally for the purpose of fetching the information of the Indian Railways and there is a lot of scope for improving and fine tuning the services provided. It saves device memory space, time and internet data usage. The chatbot will also enable the user to get the response of Small talks.

VI. IMPLEMENTATION

1. First, create an account on Dialogflow(api.ai) and Heroku
2. Second, using Dialogflow create an app and follow the basic instructions and choose the version as APIV1.
2.1 Creating entities – To create entities go to the entity tab in the side Navigation Bar and is specify the variables which has to be used in the intents such as pnr_no, train_no, sys.date.
2.2 Creating Intents- Specify the intent name and describe the expressions or templates that a user can ask. Specify the parameter using the entities and create an action name, which has to be the same defined in the Python file.
2.3 Fulfillment – Refer section 3-4 of this implementation column to create the backend. For any given intent the webhook can be enabled which fetched the data from the Heroku server using the same parameter and action name described in the intent.
2.4 Required – The small talks can be enabled using the prebuilt feature of Dialog flow. The webhook has to be connected with the Heroku server using the HTTP and token.
3. Install Git and Heroku CLI using the help of documentation available in the Heroku and Git website (install other required packages like pip and files like proc file, etc).
4. After configuring Git and Heroku CLI login into Heroku account. Create an app and specify the default language to python.
4.1 Using python create a webhook to connect with the Dialogflow, fetch the information from Railway API using HTTP and python request, store the JSON object and return the response message https://devcenter.heroku.com/categories/deployment

VII. TESTING

The below screenshots show the testing and bugs of the chatbot.

Figure 3. Python Code for Webhook Fulfillment
5. Integration- For integrating to Facebook Messenger or Telegram or any other applications (refer the Dialogflow documentation), refer the following steps. https://dialogflow.com/docs/integrations/
5.1 Create a Facebook account and developer account. After login in create an app and integrate it to Dialogflow using a generated token. In the webhook section enable message and message postback.
5.2 Telegram – Create a chatbot user using BotFather and get the token using which integrate it to the Dialogflow.

Figure 4. Small Talk with the Chatbot on Telegram
VII. CONCLUSION

This paper successfully explains and implemented chatbot which can be used to get the required information from Indian Railway. In the future, we will fix the bugs and include the railway complaints and booking information. The key to effective chatbot use is to make sure they enhance your customer’s experience. This chatbot will benefit the passengers by saving time, memory space and internet usage.

ACKNOWLEDGEMENT

We want to thank our guide Ms. Sahaya Sakila.V, A.P, SRM Institute of Science and Technology, Ramapuram Campus, Chennai, India for his continuous support and his encouraging and fruitful advises in accomplishing this task.

VIII. REFERENCES


