A Survey on Smart Parking System Based on Internet of Things

Deepthi S1, Anil A R2
M.Tech Scholar1, Associate Professor2
Department of Computer Science and Engineering
Sreebuddha College of Engineering, Pattoor, Alappuzha, Kerala, India

Abstract:
With increasing order of traffic Smart parking system is implemented...People with disability face many issues when parking vehicles in urban areas. The cloud based parking system can be used in smart cities. It will assign the best available parking. Parking can be done using android application. It automatically parks and UN parks with the help of android applications. The client can also pre-book the parking spot. This paper is a survey on smart parking. Survey involves different parking methods to park vehicle.

Key words: Smart Parking System, Urban areas, Android Application.

I. INTRODUCTION

In today life people don’t depend on public vehicles. They use their own vehicles to travel. So traffic increases. When people travel through a city the most difficult problem is to park the vehicle. It causes not only a waste of time and fuel for drivers looking for parking but it also leads to additional waste of time and fuel for other drivers as a result of traffic congestion. At first we use PGI (Parking Guidance Information) for better parking management. Parking information may be displayed on VMS (Variable Message Sign) at major roads or streets or it may be disseminated through the internet. In PGI systems e-parking is an innovative platform which allows drivers to obtain parking information before or during a trip and reserve a parking spot. To overcome the limitations of PGI system Yanfeng Geng proposes [1] a new concept “Optimal parking based on resource allocation and reservation”. It uses the concept of mixed integer linear problem. When people go through a downtown area, there much rush and traffic. In this case to find the available location for parking is very difficult. So implementing optimal parking people can easily park vehicle in the reserved locations. When a person with disability trying to park a vehicle in a city having heavy traffic, So he faces several problems in such a situation to search and park the vehicle difficult. The disabled person can park the vehicle in a specially designed location. The intelligent parking finds the best available parking, minimizing the cost. The parking and un parking can be done with the help of an android application. User has to install the android application on his/her smart phone devices, which would have the facility to pre-book the parking slot. In that case the administrator’s work will reduce. The paper is organized as follows. In section 2 literature review and in section 3 conclusions

II. LITERATURE REVIEW

There are several methods employed for the vehicle parking. The concept of new smart parking solves the parking problem by using mixed integer linear problem. The disabled person can park the vehicle at specially designed locations. Automatic parking and UN parking with the help of android applications.

1. Optimal resource allocation and reservation

Yanfeng Geng and Christos G. Cassandras proposed [1] the concept of “A new smart parking system based on optimal resource allocation and reservations”. Drivers access the system via cellular phone or internet. a new concept for a “smart parking” system. This system explicitly allocates and reserves optimal parking spaces to drivers. It uses the concept of mixed integer linear problem. Drivers who are looking for parking spots send requests to the DPRC. Driver Processing Request Centre gathers driver parking requests Cars location keeps track of driver allocation status and sends back the assignment result to drivers. A request is based on parking costs and walking distance between a parking spot and the drivers actual destination. It also contains the driver's basic information such as license number, current location and car size. An assigned parking space is send back to each driver via the DPRC. If the driver is satisfied with the assignment he has the choice to reserve that spot. Once reservation is made the driver still has opportunities to obtain a better spot. The PMRC [Parking Resource Management Center] then updates the corresponding parking spot from vacant to reserve and ensures that other drivers have no permission to take that spot. Parking Resource Management Centre collects and updates all real time information and disseminates it via internet. If a driver is not satisfied with the assignment or he fails to accept it for any other reason he has to wait until the next decision point. The mixed integer linear problem solves problems at each decision point. The requirements of the system are: first, the allocation centre has to know the status of all parking spots, the location of all vehicles, issuing requests and traffic situations. Current sensing technologies make monitoring implementable. Second is effective wireless communication between vehicle and an allocation centre. Third is the centre must be able to implement a reservation that guarantees a specific parking spot to a driver. This is achievable through existing wireless technology interfacing a vehicle with hardware that makes a spot accessible only to the driver who has reserved it. A softer scheme is use a red/green light system placed at each parking spot, where red indicates that the spot is reserved and only the vehicle assigned
to it may switch it back to green. If any “folding barriers and obstacles that emerge from and retract to the ground under a parking spot are wirelessly activated by the device on-board vehicles similar to mechanisms for electronic toll systems.

2. **Disassist: Parking for disabled person**

"Disassist: An internet of things and mobile communications platform for disabled parking space management" proposed by Lambros Lambriinos and Aristotle’s Dosis. It is a system designed and developed based on the principles brought forward by IOT and smart cities initiatives. It integrates sensors and Smartphone’s along with wireless and mobile communications to provide for better utilization and management of parking spaces allocated for use by people with disabilities. When we go through a city during rush hours when traffic is at its peak, all parking spaces are already occupied. A person with disability is trying to access city centre but he did not find any disabled parking slot. There are drivers who occupy disabled parking slots without having the right to do so. Even in some cases there are violators who have fake documents displayed on their window screen. The aim of the disassist is to enhance the parking experience from the perspective of people with disabilities. In this system the parking management organized as parking bays. The parking bays can be on street and off street. In on street, the Parking bays are found on the roadside. In off street, different categories of parking loads are ranging from single areas to large multi-storey car parks. Monitoring parking spaces are not only for checking fee payments but also for calculating availability and reporting such information to drivers for searching vacant spaces. Parking reservation can be implemented relatively easily in controlled areas that can theoretically enforce reservations and hence guarantee the availability of the reserved space. In open spaces actions such as user verification and reservations are more difficult to accomplish. When a reservation remains valid and charging must start when vehicle actually arrives at the parking location. The parking space locations are displayed on a map allowing drivers to navigate to these locations. The level of information is related to its vehicle capacity and hourly fees. A real advantage is provided by those that report current availability and reservations. A significant number of people suffer from temporary or permanent disabilities. A special permit called a disabled badge is to be issued to these people. They can park at specially designed locations. These special parking spaces are near to shops amenities and public administration offices. In these the designed badge must be displayed on their window screen. This enables the visual verification of the vehicles entitlement to be parked at the designated places. The interaction between the user and the system are described as follows: first is a mobile phone application through which an SMS message to indicate the parking slot the user has parked at. Second is an application running on a smart phone that is used to obtain parking location information as well as real time availability information. The application will allow users to verify the parking slot they have parked at and obtain reservation for a slot. Third is a dedicated device that follows IOT and communicate automatically with the rest of the infrastructure in order to authenticate the user and verify the parking slot occupied. Various improvements to the system concentrating on reservation enforcement will ensure for reservations for future time period.

3. **Intelligent car parking services**

Ivan Ganchev and Mairtin O’Droma proposed et.al [5] of “A cloud based intelligent car parking services for smart cities”. In this the IOT sub system includes sensor layer, communication layer and application layer. The primary goal of the intelligent car parking system is to find, allocate and reserve the best available car parking lot for a user who is driving a car in a particular area and to provide instructions for reaching this lot. Sensor layer detecting the car lot occupancy. A car parking lot detection method is proposed based on automatic threshold algorithm. An infostation based multi-agent system facilitating a car parking locator service is proposed. An access control system for reducing the waiting time proposed. At the application layer, an information centre provides cloud based service. An IOT management centre administrates the smart city via an IOT integrated service portal. A number of business services explore interfaces to the sensor layer. These includes a car parking locator service, car parking supervision service, car parking information service, GIS and GPS services, vehicle license patrolling, vehicle tracking service. At the communication layer various wireless technologies provide connection between the application and the sensor layer based on the ABC&S(Always Best Connected and Best Served) paradigm. A 3-tier infostation based network architecture could be integrated in this layer to enable “anytime-anywhere - anyhow communication” among smart cities. Different sensing technologies could be utilized at the sensor layer such as Radio Frequency Identification (RFID), laser, infrared, radar, ultrasonic, CCTV, acoustic. RFID used for embedded parking solutions. CCTV with video image processing for detecting the status of parking lots. Communication layer includes 3G, 4G, ZigBee, Wifi, wiMax, V2X, WSN, VANET. 3G/4G communication module used for car’s tracking and tracing. Parking meter is an optimal element needed only for paid car parks. The architecture consists of a cloud tier, mobile apps tier, OSGI web servers tier. Cloud tier provides data storage and computing resources for the car parking service. It stores available car parking lots, car's location, user's location, profiles etc. The recent data is usually stored in Hadoop's Hbase it support real time queries. The OSGI web server, it acts as bridge between mobile application tier and cloud tier. Considering the great number of web applications running in this tier, it should support the deployment of new or updated application without stopping or restarting the web server. The OSGI provides an environment to modularize web applications into bundles. The bundles are registering itself in its environment. A distributed collecting system collects web server’s log data and sends them to the cloud. In the mobile application tier, the first version of the car parking mobile application is developed for android mobile phones. When a user enters into a city an automatic request is sent by the application to a OSGI car parking web server asking for available car parking lots. The server finds the best available car parking lots for this user based on their preferences specified in the user profile. Driving directions are returned to the user along with a detailed map.

4. Using Android Application

“Automated car parking system commanded by android application” introduced by D.J. Bonde. The android application generates automatic parking and un parking with the help of commands of an android application. The system reduces the
human intervention to the minimum by automating the process of car parking. When we visit various public spaces like shopping malls, five star/seven star hotels, multiplex cine halls many problems relating to the availability of parking spaces. Most of the times we need to traverse through multiple parking slots to find a free space for parking. Our proposed system presents an autonomous car parking that regulates the number of cars that can be parked in a given space at any given time based on the parking space availability. When a car arrives at the entrance, it will be stopped at the main gate and the driver boards the car. Using the android application on his android device, the user commands the Parking Control Unit to check the status of available parking slots, through an SMS. On receiving this command, a search for free slot is carried out and corresponding information is provided to the user by means of SMS. If the availability of parking space is confirmed, the user commands the car to the designated slot. The car traces its path to the entrance of the parking area. The required details of parking slot are communicated through the car control unit. For retrieval purpose the user commands un park through android application. After receiving this SMS the car begins to trace back path to the entrance where the car driver is waiting. The proposed architecture consists of a car control unit and parking control unit. It has four modules, first is interfacing LCD with atmega32 microcontroller. It is used for displaying the status of parking. Depending on the status LCD counter is incremented or decremented. Second is, interfacing GSM Sim 900 with atmega 32 microcontroller. GSM means global systems for mobile communication. The GSM is used for sending and receiving of SMS from parking control unit. Third is, interfacing the RF module with atmega32 microcontroller. RF stands for radio frequency. The purpose of using this module is to communicate data from parking control unit to the car control unit. Fourth is android application which serves as a GUI for the users to send the messages through their android devices. The buttons like “check my status, get my car” are displayed on their android device. User can select the choice according to availability of parking. Samiksha Nagmote, Pallavi Mane introduces a concept [7] of “a proposed automatic car parking system based on android”. It overcomes the limitation of automated car parking system. In automated parking system there is no security for the reservation. Anyone who knows your number then can take the car easily. The user can pre- book a slot in the area he desires if it is available for some hours prior to his expected arrival. This will help reduce the load on the administrator. The user can search the parking area through the android application and pre book that slot. Payment services are made available using Google. The proposed system is based on client-server architecture. The client pre-books a parking spot by giving their vehicle number. For the processing at first step, user needs to install “park me “application on his android based device. After installation the icon of the app will display on the home screen of the user’s device. Then the user has to register his details with the application for the first time. This is one time registration. The user has to enter details such as name, address, gender and mobile number. All the data will be stored on server. The next step is selection of locations for parking. In this the client is provided with multiple parking locations. Client has to select one of the locations where he desires to park the vehicle. Based on the availability parking slots will be displayed on client’s device. Color coding is used to indicate the empty or reserved slot. If the required space is available then the client can proceed for further process. Otherwise he can terminate the entire process or change the location. After successful reservation a confirmation message is send back to the client’s device. The parking at crowdy places can be handled through this parking system.

III. CONCLUSION

While implementation of the proposed smart parking techniques reduces the waiting time. It also saves fuel for drivers when searching the availability of the parking space. It reduces the environmental pollution. The parking problem can be handled easily at crowdy places. The parking space can be effectively utilized. The people with disability can park the vehicle in a specially designed location. So these people can easily park the vehicle in the spot. An intelligent parking system will select the best available parking space. People who use android application will park and un park vehicles by using android commands. So while using smart parking system, parking can handled through a well thought plan. It helps the users to find availability of parking slot and the user can reach the place within the time slot. So the client will get a better parking facility during rush hour.

IV. REFERENCES

V. BIOGRAPHIES

Deepti.S obtained B. tech. (Computer Science & Engineering) from University College of Engineering, Kariavattom, 3177

http://ijesc.org/
Thiruvananthapuram, kerala & pursuing M. Tech. in Computer Science and Engineering from Sreebuddha College of Engineering, Pattoor, Alappuzha, kerala.

Anil A R is currently working as Associate Professor in the Department of Computer Science and Engineering in Sreebuddha College of Engineering, Pattoor, Alappuzha, kerala. He obtained his M. Tech. in computer science from university of Kerala.