Power Quality Improvement by Using DSTATCOM with Back-Propagation Control Algorithm

B. Rajitha¹, D. Venugopal², D. Anudeep Shama³
PG Scholar¹,³, Associate Professor²
KITS-Singapuram, India

Abstract:
This paper presents an implementation of a three phase distribution static compensator (DSTATCOM) using a back propagation (BP) control algorithm for its functions such as harmonic elimination, load balancing and reactive power compensation for power factor correction, and zero voltage regulation under nonlinear loads. A BP-based control algorithm is used for the extraction of the fundamental weighted value of active and reactive power components of load currents which are required for the estimation of reference source currents. The performance of DSTATCOM is found to be satisfactory with the proposed control algorithm for various types of loads.

Index Terms: Back propagation (BP) control algorithm, harmonics, load balancing, power quality, weights.

1. INTRODUCTION

The quality of available supply power has a direct economic impact on industrial and domestic sectors which affects the growth of any nation [1]. This issue is more serious in electronic based systems. The level of harmonics and reactive power demand are popular parameters that specify the degree of distortion and reactive power demand at a particular bus of the utility [2]. The harmonic resonance is one of the most common problems reported in low- and medium-level distribution systems. It is due to capacitors which are used for power factor correction (PFC) and source impedance [3]. Power converter-based custom power devices (CPDs) are useful for the reduction of power quality problems such as PFC, harmonic compensation, voltage sag/swell compensation, resonance due to distortion, and voltage flicker reduction within specified international standards [4]–[6]. These CPDs include the distribution static compensator (DSTATCOM), dynamic voltage restorer, and unified power quality conditioner in different configurations [7]–[9]. Some of their new topologies are also reported in the literature such as the indirect matrix converter based active compensator where the dc-link capacitor can be removed [10]. Other new configurations are based on stacked multi cell converters where the main features are on the increase in the number of output voltage levels, without transformer operation and natural self-balancing of flying capacitor voltage, etc. The performance of any custom power device depends very much upon the control algorithm used for the reference current estimation and gating pulse generation scheme. Some of the classical control algorithms are the Fryze power theory, Budeanu theory, p-q theory and SRF theory, Lyapunov-function-based control and nonlinear control technique etc. Many non model and training-based alternative control algorithms are reported in the literature with application of soft computing technique such as neural network, fuzzy logic and adaptive neuro-fuzzy, etc. Adaptive learning, self organization, real-time operation, and fault tolerance through redundant information are major advantages of these algorithms.

A neural network-based control algorithm such as the Hopfield-type neural network is also used for the estimation of the amplitude and phase angles of the fundamental component both with highly distorted voltage by the assumption of known power frequency. An improved adaptive detecting approach for the extraction of the error signal with variable learning parameters can be chosen for fast response to improve tracking speed and for a low value in a stable period to improve accuracy. Wu et al. have proposed a new control algorithm based on inverse control with a neural network interface which was applied for the instantaneous calculation of switching on-off time in a digital environment. A survey on iterative learning control (ILC) is presented by Ahn et al, and it is classified into different subsections within the wide range of application. The main idea of ILC is to find an input sequence such that the output of the system is as close as possible to a desired output. Control algorithms reported in available texts such as the quantized Kernel least mean square algorithm, radial basis function (RBF) networks, and feedforward training can also be used for the control of CPDs. An immune RBF neural network integrates the immune algorithm with the RBF neural network. This algorithm has the advantages in the learning speed and accuracy of the astringent signal. Therefore, it can detect the harmonics of the current timely and precisely in the power network. A multilayer perceptron neural network is useful for the identification of nonlinear characteristics of the load. The main advantage of this method is that it requires only waveforms of voltages and currents. A neural network with memory is used to identify the nonlinear load admittance. Once training is achieved, the neural network predicts the true harmonic current of the load when supplied with a clean sine wave. Its application with SRF theory is described by Mazumdar et al. Feedforward back propagation (BP) artificial neural network (ANN) consists of various layers such as the input layer, hidden layer, and output layer. It is based on feedforward BP with a high ability to deal with complex nonlinear problems. The BP control algorithm is also used to design the pattern classification model based on decision support
The standard BP model has been used with the full connection of each node in the layers from input to the output layers. Some applications of this algorithm are as to the identification of user faces, industrial processes, data analysis, mapping data, control of power quality improvement devices, etc. The control of power quality devices by neural network is a latest research area in the field of power engineering. The extraction of harmonic components decides the performance of compensating devices. The BP algorithm which trained the sample can detect the signal of the power quality problem in real time. Its simulation study for harmonic detection is presented in. Many neural network-based algorithms are reported with theoretical analysis in single phase system, but their implementation to DSTATCOM is hardly reported in the available literature.

II. SYSTEM CONFIGURATION AND CONTROL ALGORITHM

A voltage source converter (VSC)-based DSTATCOM is connected to a three phase ac mains feeding three phase linear/nonlinear loads with internal grid impedance which is shown in Fig. 1. The performance of DSTATCOM depends upon the accuracy of harmonic current detection. For reducing ripple in compensating currents, the tuned values of interfacing inductors (Lf) are connected at the ac output of the VSC. A three phase series combination of capacitor (Cf) and a resistor (Rf) represents the shunt passive ripple filter which is connected at a point of common coupling (PCC) for reducing the high frequency switching noise of the VSC. The DSTATCOM currents (iCabc) are injected as required compensating currents to cancel the reactive power components and harmonics of the load currents so that loading due to reactive power component/harmonics is reduced on the distribution system. For the considered three phase nonlinear load with approximately 24 kW, the compensator data are given in Appendix A. Fig. 2 shows the block diagram of the BP training algorithm for the estimation of reference source currents through the weighted value of load active power and reactive power current components. In this algorithm, the phase PCC voltages (vsa, vsb, and vsc), source currents (isa, isb, and isc), load currents (iLa, iLb, and iLc) and dc bus voltage (vdc) are required for the extraction of reference source currents (i*sa, i*sb, and i*sc).

There are two primary modes for the operation of this algorithm: The first one is a feed forward, and the second is the BP of error or supervised learning. The detail application of this algorithm for the estimation of various control parameters is given as follows.

A. ESTIMATION OF WEIGHTED VALUE OF AVERAGE FUNDAMENTAL LOAD ACTIVE AND REACTIVE POWER COMPONENTS:

\[I_{Lap} = w_o + i_{La}u_{ap} + i_{Lb}u_{bp} + i_{Lc}u_{cp} \]
\[I_{Lbp} = w_o + i_{Lb}u_{bp} + i_{La}u_{cp} + i_{Lc}u_{ap} \]
\[I_{Lcp} = w_o + i_{Lc}u_{cp} + i_{La}u_{ap} + i_{Lb}u_{bp} \]

A BP training algorithm is used to estimate the three phase weighted value of load active power current components (wap, wbp, and wcp) and reactive power current components (waq, wbq, and wcq) from polluted load currents using the feed forward and supervised principle. In this estimation, the input layer for three phases (a, b, and c) is expressed as where wo is the selected value of the initial weight and uap, ubp, and ucp are the in-phase unit templates. In-phase unit templates are estimated using sensed PCC phase voltages (vsa, vsb, and vsc). It is the relation of the phase voltage and the amplitude of the PCC voltage (vt). The amplitude of sensed PCC voltages is estimated as

\[v_t = \sqrt{2 (v_{sa}^2 + v_{sb}^2 + v_{sc}^2) / 3} \]
The extracted values of I_{Lap}, I_{Lbp}, and I_{Lcp} are passed through a sigmoid function as an activation function, and the output signals (Z_{ap}, Z_{bp}, and Z_{cp}) of the feed forward section are expressed as:

$$Z_{ap} = f(I_{Lap}) = 1/(1 + e^{-I_{Lap}})$$ \hspace{1cm} (6)

$$Z_{bp} = f(I_{Lbp}) = 1/(1 + e^{-I_{Lbp}})$$ \hspace{1cm} (7)

$$Z_{cp} = f(I_{Lcp}) = 1/(1 + e^{-I_{Lcp}}).$$ \hspace{1cm} (8)

The estimated values of Z_{ap}, Z_{bp}, and Z_{cp} are fed to a hidden layer as input signals. The three phase outputs of this layer (I_{ap1}, I_{bp1}, and I_{cp1}) before the activation function are expressed as:

$$I_{ap1} = u_{o1} + w_{ap}Z_{ap} + w_{bp}Z_{bp} + w_{cp}Z_{cp}$$ \hspace{1cm} (9)

$$I_{bp1} = u_{o1} + w_{ap}Z_{bp} + w_{bp}Z_{cp} + w_{cp}Z_{ap}$$ \hspace{1cm} (10)

$$I_{cp1} = u_{o1} + w_{ap}Z_{cp} + w_{bp}Z_{ap} + w_{cp}Z_{bp}$$ \hspace{1cm} (11)

where w_{o1}, w_{ap}, w_{bp}, and w_{cp} are the selected value of the initial weight in the hidden layer and the updated values of three phase weights using the average weighted value (w_{p}) of the active power current component as a feedback signal, respectively. The updated weight of phase “a” active power current components of load current “wap” at the nth sampling instant is expressed as:

$$w_{ap}(n) = w_{p}(n) + \mu \{w_{p}(n) - w_{ap}(n)\} f'(I_{ap1})Z_{ap}(n)$$ \hspace{1cm} (12)

where $w_{p}(n)$ and $w_{ap}(n)$ are the average weighted value of the active power component of load currents and the updated weighted value of phase “a” at the nth sampling instant, respectively, and $w_{ap1}(n)$ and $Z_{ap}(n)$ are the phase “a” fundamental weighted amplitude of the active power component of the load current and the output of the feedforward section of the algorithm at the nth instant, respectively. $f'(I_{ap1})$ and μ are represented as the derivative of I_{ap1} components and the learning rate. Similarly, for phase “b” and phase “c,” the updated weighted values of the active power current components of the load current are expressed as:

$$w_{bp}(n) = w_{p}(n) + \mu \{w_{p}(n) - w_{bp}(n)\} f'(I_{bp1})Z_{bp}(n)$$ \hspace{1cm} (13)

$$w_{cp}(n) = w_{p}(n) + \mu \{w_{p}(n) - w_{cp}(n)\} f'(I_{cp1})Z_{cp}(n).$$ \hspace{1cm} (14)

The average weighted amplitude of the fundamental active power components (w_{p}) is estimated using the amplitude sum of three phase load active power components (w_{ap1}, w_{bp1}, and w_{cp1}) divided by three. It is required to realize load balancing features of DSTATCOM. Mathematically, it is expressed as

$$w_{p} = (w_{ap1} + w_{bp1} + w_{cp1})/3.$$ \hspace{1cm} (18)

First-order low-pass filters are used to separate the low frequency components. “k” denotes the scaled factor of the extracted active power components of current in the algorithm which is shown in Fig. 2. After separating the low-frequency components and scaling to the actual value because the output of the activation function is between 0 and 1, it is represented as $wL_{P}A$. Similarly, the weighted amplitudes of the reactive power components of the load currents (u_{aq}, u_{bq}, and u_{cq}) of the fundamental load current are extracted as

$$I_{Laq} = w_{o} + i_{La}u_{aq} + i_{Lb}u_{bq} + i_{Lc}u_{cq}$$ \hspace{1cm} (19)

$$I_{Lbq} = w_{o} + i_{Lb}u_{aq} + i_{Lc}u_{bq} + i_{La}u_{cq}$$ \hspace{1cm} (20)

$$I_{Lcq} = w_{o} + i_{Lc}u_{aq} + i_{La}u_{bq} + i_{Lb}u_{cq}$$ \hspace{1cm} (21)

where w_{o} is the selected value of the initial weight and u_{aq}, u_{bq}, and u_{cq} are the quadrature components of the unit template. The quadrature unit templates (u_{aq}, u_{bq}, and u_{cq}) of the phase PCC voltage are estimated using (5) as

$$u_{aq} = \frac{(-u_{bp} + u_{cp})}{\sqrt{3}}, \hspace{1cm} u_{bq} = \frac{(3u_{ap} + u_{bp} - u_{cp})}{2\sqrt{3}}$$ \hspace{1cm} (22)

$$u_{cq} = \frac{(-3u_{ap} + u_{bp} - u_{cp})}{2\sqrt{3}}.$$ \hspace{1cm} (22)

The extracted values of I_{Laq}, I_{Lbq}, and I_{Lcq} are passed through a sigmoid function as an activation function to the estimation of Z_{aq}, Z_{bq}, and Z_{cq}.
The estimated values of Z_a, Z_b, and Z_c are fed to the hidden layer as input signals. The three phase outputs of this layer (I_{a1}, I_{b1}, and I_{c1}) before the activation function can be represented as

$$I_{a1} = w_{a1} + w_{aq}Z_{aq} + w_{bq}Z_{bq} + w_{cq}Z_{cq}$$

$$I_{b1} = w_{b1} + w_{aq}Z_{aq} + w_{bq}Z_{bq} + w_{cq}Z_{cq}$$

$$I_{c1} = w_{c1} + w_{aq}Z_{aq} + w_{bq}Z_{bq} + w_{cq}Z_{cq}$$

Where w_{a1}, w_{aq}, w_{bq}, and w_{cq} are the selected value of the initial weight in the hidden layer and the updated three weights using the average weighted value of the reactive power components of currents (w_q) as a feedback signal, respectively.

The updated weight of the phase “a” reactive power components of load currents “waq” at the nth sampling instant is expressed as

$$w_{aq}(n) = w_q(n) + \mu \left(w_q(n) - w_{aq1}(n) \right) f'(I_{aq1})z_{aq}(n)$$

where $w_q(n)$ and $w_q(n)$ are the average weighted value of the reactive power component of load currents and the updated weight in the nth sampling instant, respectively, and $w_{aq1}(n)$ and $z_{aq}(n)$ are the phase “a” weighted amplitude of the reactive power current component of load currents and the output of the feedforward section of the algorithm at the nth instant, respectively. $f'(I_{aq1})$ and μ are presented as the derivative of I_{aq1} components and the learning rate. Similarly, for phase “b” and phase “c,” the updated weighted values of the reactive power current components of the load current are expressed as

$$w_{bq}(n) = w_q(n) + \mu \left(w_q(n) - w_{bq1}(n) \right) f'(I_{bq1})z_{bq}(n)$$

$$w_{cq}(n) = w_q(n) + \mu \left(w_q(n) - w_{cq1}(n) \right) f'(I_{cq1})z_{cq}(n)$$

The average weight of the amplitudes of the fundamental reactive power current components (w_q) is estimated using the amplitude sum of the three phase load reactive power components of the load current ($waq1$, $wbq1$, and $wcq1$) divided by three. Mathematically, it is expressed as

$$w_q = \frac{(waq1 + wbq1 + wcq1)}{3}$$

First-order low-pass filters are used to separate the low frequency component. “r” denotes the scaled factor of the extracted reactive power components in the algorithm which is shown in Fig. 2. After separating low-frequency components and scaling to the actual value because the output of the activation function is between 0 and 1, it is represented as wL_qA.

An error in the dc bus voltage is obtained after comparing the reference dc bus voltage v_{dc}^* and the sensed dc bus voltage v_{dc} of a VSC, and this error at the nth sampling instant is expressed as

$$v_{dc}(n) = v_{dc}^*(n) - v_{dc}(n)$$

This voltage error is fed to a proportional–integral (PI) controller whose output is required for maintaining the dc bus voltage of the DSTATCOM. At the nth sampling instant, the output of the PI controller is as follows:

$$v_{dp}(n) = v_{dp}(n-1) + k_{pd} \left(v_{de}(n) - v_{de}(n-1) \right) + k_{id} v_{de}(n)$$

where k_{pd} and k_{id} are the proportional and integral gain constants of the dc bus PI controller. $v_{de}(n)$ and $v_{de}(n-1)$ are the dc bus voltage errors in the nth and (n − 1)th instant, and $w_{dp}(n)$ and $w_{dp}(n-1)$ are the amplitudes of the active power component of the fundamental reference current at the nth and (n − 1)th instant, respectively. The amplitude of the active power current components of the reference source current (w_{spt}) is estimated by the addition of the output of the dc bus PI controller (w_{dp}) and the average magnitude of the load active currents (wL_pA) as

$$w_{spt} = w_{dp} + w_{L_pA}$$

C. AMPLITUDE OF REACTIVE POWER COMPONENTS OF REFERENCE SOURCE CURRENTS:

An error in the ac bus voltage is achieved after comparing the amplitudes of the reference ac bus voltage v_{ac}^* and the sensed ac bus voltage v_{ac} of a VSC. The extracted ac bus voltage error v_{ae} at the nth sampling instant is expressed as
\[v_{te}(n) = v_{te}^*(n) - v_t(n). \] \hspace{1cm} (39)

The weighted output of the ac bus PI controller \(w_{qq} \) for regulating the ac bus terminal voltage at the nth sampling instant is expressed as

\[w_{qq}(n) = w_{qq}(n-1) + k_{pt} \left[v_{te}(n) - v_{te}(n-1) \right] + k_{it} v_{te}(n) \] \hspace{1cm} (40)

where \(w_{qq}(n) \) is part of the reactive power component of the source current and it is renamed as \(w_{qq} \). \(k_{pt} \) and \(k_{it} \) are the proportional and integral gain constants of the ac bus voltage PI controller. The amplitude of the reactive power current components of the reference source current (\(w_{sq} \)) is calculated by subtracting the output of the voltage PI controller (\(w_{qq} \)) and the average load reactive currents (\(w_{LqA} \)) as

\[w_{sq} = w_{q} - w_{LqA}. \] \hspace{1cm} (41)

DETECTION OF REFERENCE SOURCE CURRENTS AND GENERATION OF IGBT GATING PULSES:

Three phase reference source active and reactive current components are estimated using the amplitude of three phase (a, b, and c) load active power current components, PCC voltage in-phase unit templates, reactive power current components, and PCC quadrature voltage unit templates as

\[i_{sap} = w_{sap} \hspace{1cm} i_{sdp} = w_{sdp} \hspace{1cm} i_{scp} = w_{scp} \] \hspace{1cm} (42)

\[i_{saq} = w_{saq} \hspace{1cm} i_{sbq} = w_{sbq} \hspace{1cm} i_{scq} = w_{scq} \] \hspace{1cm} (43)

The addition of reference active and reactive current components is known as reference source currents, and these are given as

\[i_{sa}^* = i_{sap} + i_{saq}, \hspace{1cm} i_{sb}^* = i_{sdp} + i_{sbq}, \hspace{1cm} i_{sc}^* = i_{scp} + i_{scq}. \] \hspace{1cm} (44)

The sensed source currents (\(i_{sa}, i_{sb}, i_{sc} \)) and the reference source currents (\(i_{sa}^*, i_{sb}^*, i_{sc}^* \)) are compared, and current error signals are amplified through PI current regulators; their outputs are fed to a pulse width modulation (PWM) controller to generate the gating signals for insulated-gate bipolar transistors (IGBTs) S1 to S6 of the VSC used as a DSTATCOM.

III. SIMULATION RESULTS

MATLAB with SIMULINK and Sim Power System toolboxes is used for the development of the simulation model of a DSTATCOM and its control algorithm. The performance of the BP algorithm in the time domain for the three phase DSTATCOM is simulated for PFC and ZVR modes of operation under nonlinear loads. The performance of the control algorithm is observed under nonlinear loads.

A. PERFORMANCE OF DSTATCOM IN PFC MODE:

The dynamic performance of a VSC-based DSTATCOM is studied for PFC mode at nonlinear loads. The performance indices are the phase voltages at PCC (\(v_s \)), balanced source currents (\(i_s \)), load currents (\(i_{La}, i_{Lb}, \text{and} \ i_{Lc} \)), compensator currents (\(i_Ca, i_Cb, \text{and} \ i_Cc \)), and dc bus voltage (\(v_{dc} \)) which are shown in Fig. 3 under varying load (at \(t = 3.7 \) to \(3.8 \) s) conditions. The waveforms of the phase “a” voltage at PCC (\(v_{sa} \)), source current (\(i_s \)), and load current (\(i_{La} \)) are shown in Fig. 6(a)–(c).

B. PERFORMANCE OF DSTATCOM IN ZVR MODE:

In ZVR mode, the amplitude of the PCC voltage is regulated to the reference amplitude by injecting extra leading reactive power components. The dynamic performance of DSTATCOM in terms of PCC phase voltages (\(v_s \)), balanced source currents (\(i_s \)), load currents (\(i_{La}, i_{Lb}, \text{and} \ i_{Lc} \)), compensator currents (\(i_Ca, i_Cb, \text{and} \ i_Cc \)), amplitude of voltages at PCC (\(v_t \)), and dc bus voltage (\(v_{dc} \)) waveforms is shown in Fig. 5 under unbalanced load at a time duration of \(t = 3.7 \) to \(3.8 \) s.

VI. SIMULATION MODEL AND RESULTS

Figure 3. Matlab Simulation model of the presented system

Figure 4. Dynamic performance of DSTATCOM under varying nonlinear loads
A VSC-based DSTATCOM has been accepted as the most preferred solution for power quality improvement as PFC and to maintain rated PCC voltage. A three phase DSTATCOM has been implemented for the compensation of nonlinear loads using a BPT control algorithm to verify its effectiveness. The proposed BPT control algorithm has been used for the extraction of reference source currents to generate the switching pulses for IGBTs of the VSC of DSTATCOM. Various functions of DSTATCOM such as harmonic elimination and load balancing have been demonstrated in PFC and ZVR modes with dc voltage regulation of DSTATCOM. From the simulation and implementation results, it is concluded that DSTATCOM and its control algorithm have been found suitable for the compensation of nonlinear loads. Its performance has been found satisfactory for this application because the extracted reference source currents exactly traced the sensed source currents during the steady state as well as dynamic conditions. The dc bus voltages of the DSTATCOM has also been regulated to the rated value without any overshoot or undershoot during load variation. Large training time in the application of the complex system and the selection of the number of hidden layers in the system are disadvantages of this algorithm.

V. CONCLUSION

VI. REFERENCES

