Analysis of Student Learning Experience by Mining Social Media Data

Akanksha A. Pande¹, S. A. Kinariwala²
PG Student¹, Professor²
Department of Computer Science and Engineering
MIT College, Aurangabad, India

Abstract:
Many issues like depression, suicide, anger, anxiety are increasing among students. These issues are necessary to seek out and analyze, but students never discuss their issues with anyone. Today Social media is very popular medium where individuals share their feeling and opinion. Students also terribly active on social sites like Facebook and Twitter. Their unceremonious discussion on social media (e.g. Twitter, Facebook) illuminates light on their educational experiences—vote, sentiment, opinions, feelings, and concerns about the learning process. Data from such environments can supply valuable information which is helpful knowledge to understand student learning experiences. Analyzing such data can be challenging. The augmenting scale of data demands automatic data analysis techniques. This paper depicts a workflow to integrate both qualitative analysis and large-scale data mining techniques. This paper emphasized on student’s twitter posts to learn problems in student life as well as positive things occurred in their educational life. First conducted a qualitative analysis on sample tweets related to student’s college life. Students face issues such as heavy work load of study, lack of social engagement, and sleep deprivation, employment issue, etc. In this paper “positive things” happen in student’s life is also taken in to consideration. To classify tweets reflecting student’s problem multilabel classification algorithms is implemented. Naive Bayes and Linear Support Vector Machine Learning algorithms are used. The performance of these algorithms is compared in terms of accuracy, precision, recall and F1-Measure. Support Vector Machine learning algorithm have more accuracy than Naïve Bayes Algorithm.

Keywords: Education, computers and education, social networking, web text analysis, Twitter Multi-Label Classifier.

I. INTRODUCTION

Data mining research provides several techniques, tools, and algorithms for enormous amounts of data to answer real-world issues. Social media plays powerful role in today’s era. As social media is generally used for various purposes, vast amounts of user created data can be made available for data mining. Main objectives of the data mining procedure are to communally handle large-scale data, extract useful patterns, and gain required knowledge. Social media sites such as Twitter, Facebook, and YouTube provides stage to share happiness, struggle, sentiment, stress and acquire social support. On various social media sites, students discuss about their daily encounters in a comfortable and informal manner. They share their happiness and sorrows related to studies on social media in the form of judgmental comments, tweets, posts etc. Student’s digital information provides large amount of implicit useful and reliable information for educational researchers to understand student’s experiences outside the closed environment of classroom. This understanding can enhance education standard, and thus improve student employment, preservation, and accomplishment [1][2]. The Massive quantity of information on social sites gives prospective to recognize student’s problem, however conjointly promotes some methodological complexities in use of social media data for educational reasons. The complexities such as assortment of Internet slangs, absolute data volumes and moment of students posting on the web. Pure physical analysis cannot contract with the ever growing scale of data, while pure automatic algorithms cannot capture in-depth significance inside the data [3]. One important reason why social media will be relayed on is that the comments and posts are ad hoc emotions and feelings of students. This study will be terribly helpful and may prove revolutionary for an educational institute as crucial changes will be made in educational nature of the institute. The research goal of this learning are:-

a) To make the enormous amount of data useful for educational purpose, as well as to combine both qualitative analysis and large-scale data mining techniques.
b) To examine student’s informal tweets on twitter in order to investigate the problems and issues faced by students in their life.

II. LITERATURE SURVEY

The theoretical foundation for worth of informal data on the web is drawn from Goffman’s theory of social performance. Although developed to elucidate face-to-face interactions, Goffman’s theory of social performance is widely used to explain mediated interactions on the web today. One amongst the foremost basic aspects of this theory is that notion of front-stage and back-stage of people’s social performances. Compared with the front-stage, the relaxing atmosphere of backstage typically encourages more spontaneous actions. Whether a social setting is front-stage or back-stage could be a relative matter. For students, compared with formal classroom settings, social media is a relatively informal and relaxing. When students post content on...
social media sites, they usually post what they think and feel at that moment. In this sense, the data collected from on-line conversations may be more authentic and unfiltered than responses to formal research prompts. These conversations act as a zeitgeist for students’ experiences [1]. Many studies show that social media users may purposefully manage their on-line identity to “look better” than in real life. Human identity is complex and multifaceted. Humans acquire identity through social interaction and enact different roles, depending on context and social teams. For example, one may be a commanding, determined business executive at work, caring mother at home, and funny friend at a social gathering [2]. The facet of identity one enacts at a given point in time depends upon context and the particular social group (i.e. family, coworkers, friends) present in that context. Other studies show that there’s an absence of awareness regarding managing online identity among college students, and that young people typically regard social media as their personal space to hang out with peers outside the sight of parents and teachers. Students’ online conversations reveal aspects of their experiences that are not simply seen in formal classroom settings, thus are usually not documented in academic literature. Researchers from diverse fields have analyzed twitter content to generate specific knowledge for their respective subject domains. For example, Gaffney analyzes tweets with hashtag #iranElection using histograms, user networks, as well as frequencies of top keywords to quantify online activism. Similar studies are conducted in different fields including healthcare, marketing, and athletics, just to name a few. Analysis methods used in these studies usually include qualitative content analysis, linguistic analysis, network analysis, and few simplistic methods such as word clouds and histograms. This model was then applied and validated on a brand new data set. Therefore, emphasize not only the insights gained from one data set, but also the application of the classification algorithm to other data sets for detecting student issues. The human effort is thus augmented with large-scale data analysis. Researchers have analyzed twitter data and place efforts for introducing methods for classifying twitter data For example, Alec Go introduced a completely unique approach for automatically classifying the sentiment of Twitter messages [3]. These messages are classified as either positive or negative with relevance to a query term. This is useful for consumers who want to re- search the sentiment of products before purchase, or companies that want to monitor the public sentiment of their brands. There is no previous research on classifying sentiment of messages on microblogging services like Twitter. This study presents the results of machine learning algorithms for classifying the sentiment of Twitter messages using distant supervisions. This is extremely useful because it allows feedback to be aggregated without manual intervention.

III. PROPOSED SYSTEM

This approach uses totally different machine learning classifiers and has feature extractors. The proposed system works on student’s tweets. These tweets are related to student’s educational experiences. This system defines seven labels which are: heavy study load, lack of social engagement, negative emotions, sleep problem, diversity issues, positive things and struggle. The objective is to explore student’s informal conversations on twitter in order to understand issues and problems of students encounter in their learning experiences. The tweets are loaded and processed by standard text mining procedure called Pre-processing. This system is used to understand student learning experiences. The existing system uses classification algorithms finds only negative emotions of students learning, whereas the proposed system will use to discover positive as well as negative emotions. Naïve bayes and support machine algorithm is used to discover the positive as well as negative emotion of student about their learning experiences. The comparison of the results of these algorithms is done using parameters accuracy, precision, recall and F1-Measure. The figure 1 shows the architecture of proposed system. First step is to collect the data for processing. This data is nothing but student’s tweets which have positive and negative expression about their academic experiences. In next step collected data is explored and define the categories into which tweets can be differentiated. The tweets are preprocessed i.e. stemming, stop word cleaning. Stemming reduces inflected words to their stem, base or root form. In stop word cleaning, there are list of stop words which are removed by preprocessing from text documents. However, on tokenization stream of text is break into words, phrases or symbols. The model is trained using multilabel classifier. The multi-label Support Vector Machine and Multi-label Naive Bayes classifier are implemented and compared. The procedure of the proposed system is as follows:

1) In the step one data collection is done from twitter.
2) Inductive Content analysis procedure is performed and categories are identified.
3) The preprocessing and tfidf is calculated in the step 2.
4) Naïve Bayes classifier, Linear SVM is applied on dataset in order to demonstrate its application in detecting student’s issues is step 4.

![System Architecture](http://ijesc.org/)

Figure 1. System Architecture
IV. IMPLEMENTATION

This project implements using following processes Inductive content analysis is used to identify the relevant and irrelevant tweets. In this categories are identified in which tweets are going to classify. Naïve bayes and support vector machine algorithm are used to classify the tweets of student’s informal discussions.

4.1 DATA COLLECTION

It is challenging to collect social media data related to student’s experiences because of the irregularity and diversity of the language used. Data searched on Twitter. The Twitter APIs can configure to accomplish this task. The search process was exploratory. Data searching is based on different Boolean combinations of possible keywords such as engineer, students, campus, class, homework, professor, and lab. Twitter API downloaded from twitter using tool My TwitterScrapper. User should have twitter account and have to make an application for downloading tweets. These tweets can be download using hashtags. Twitter API can also be found location wise and particular person’s account. MyTwitterScrapper is java based tool which is used to download the Twitter API. These tweets are saved in excel format. But this data is unclean and contain many errors as well as bugs. Similarly all tweets are not relevant to this system. System required tweets which contain positive as well as negative emotion or experiences of student in their educational life. Using MyTweetScrapper Tool 25000 tweets are downloaded among these tweets only 1700 tweets are useful for this system.

4.1 Inductive content Analysis

Social media content like tweets contain a bulky amount of informal language, sarcasm, acronyms, and misspellings, meaning is often ambiguous and subject to human interpretation. Rost et. al argue that in large scale social media data analysis, faulty assumptions are likely to arise if automatic algorithms are used without taking a qualitative look at the data. According to study there is no appropriate unsupervised algorithms could reveal in-depth meanings in our data. For example, LDA (Latent Dirichlet Allocation) is a popular topic modeling algorithm that can detect general topics from very large scale data. LDA has only produced meaningless word groups from our data with a lot of overlapping words across different topics. There were no pre-defined categories of the data, so it is necessary to explore what students were saying in the tweets. Thus, first step is to perform an inductive content analysis on the dataset. Inductive content analysis is one popular qualitative research method for manually analyzing text content.

4.2 Categories of Data

As a consequence proposed system first conducted an inductive content analysis on the n dataset. This paper classified the student tweets in to seven categories. Existing system have five prominent themes and proposed system consist of seven prominent categories:

i. Heavy Study Load

Analyses show that, classes, homework, exams, and labs control the student’s life. Libraries, labs, and the college building are their most frequently visited places. Some illustrative tweets are “Study for 30 hours., “Doing homework since morning still incomplete.”, and “OS project due Thursday.”, and “homework

never finish”. Students express a very stressful experience. Not being able to manage the heavy study load. This finding echoes a previous study on students’ life balance by which indicates student’s desire a more balanced life than their academic environment allows.

ii. Lack of Social Engagement

The analyses show that students have to give up the time for social engagement in order to do homework, and to prepare for classes and study for exams. For example, “I feel like I’m hidden from the world—life of an student”. Lack of social engagement is also tangled with the conventional nerdy and anti-social image of students. Some students embrace the anti-social image, while most others desire more social life as the examples above show.

iii. Negative Emotion

There are a bunch of negative emotions flowing in the tweets. This category specifically contains negative emotions such as hatred, anger, stress, sickness, depression, disappointment, and hopelessness. Students are mostly stressed with schoolwork. For example, “looking at my grades online makes me sick”, “40 hours in the library in the past 3 days. I hate finals”, and “I feel myself dying, #nervous”. It is necessary for students to get help with how to manage stress and get emotional support.

iv. Sleep Issues

Analyses find that sleep issues are widely common among students. Students frequently suffer from lack of sleep and nightmares due to heavy study load and stress. For example, “Napping in the common room because I know I won’t sleep for the next three days”, “If I don’t schedule in sleep time, it doesn’t happen”, and “I woke up from a nightmare where I didn’t finish my physics lab on time”. Chronic lack of sleep or low-quality sleep can result in many psychological and physical health issues; therefore this issue needs to be addressed.

v. Diversity Issues

The Analyses suggest students perceive a significant lack of females in engineering. For example, “eighty five kids leaving the classroom before mine, of those 85, four are girls. Engineers math class #Stereotypical”, and “Keeping up with tradition: 2 girls in a class of 40”. Male students in engineering are regarded as bad at talking with female students, because they usually do not have many female students around in their class. For example, “I’m sorry. We’re not use to having girls around”, “I pity the 1 girl in my lab with 25 guys. The issue here is not lack of diversity, but rather that students have difficulties embracing the diversity, because of many culture conflicts.

vi. Positive

A large number of tweets fall under this category. As student faces many issues in their educational life to recognizing as well as reducing those issues this system designed. Student also faces many positive things and emotions in their educational life to recognize such emotions are equally important. By recognizing such emotions which can have positive impact on student life is to make students life happy. This category is consisting of emotions such as happy, Fine, good, easy, got, holiday, over, etc.

vii. Struggle: According to studied dataset conclusion occurs that many student tweets on their struggle in education. So new
class introduced in proposed work. Student Tweets on they face struggle in finding job. They are struggling for passing exam. Syllabus is hard and problem in finding syllabus. For example: “Engineering is struggle in every field from finding syllabus to finding job. If I could stop time would catch up on my I tutorials so hard”. This kind of tweets included in this category.

4.3 Text Preprocessing
Twitter users use some special symbols to convey certain meaning. For example, # is used to indicate a hashtag, @ is used to indicate a user account, and RT is used to indicate a re-tweet. Twitter users sometimes repeat letters in words so that to emphasize the words, for example, “huuungryy”, “sooo muchh”, and “Monnndayyy”. Besides, common stopwords such as “a, an, and, of, he, she, it”, non-letter symbols, and punctuation also bring noise to the text. So we pre-processed the texts before training the classifier:

4.4 Naïve Bayes Multi-Label Classification Algorithm
One popular way to implement multi-label classifier is to transform the multi-label classification problem into multiple single-label classification problems. One simple transformation method is called one-versus-all or binary relevance. The basic concept is to assume independence among categories, and train a binary classifier for each category. All kinds of binary classifier can be transformed to multi-label classifier using the one-versus-all heuristic. The following are the basic procedures of the multi-label Naïve Bayes classifier. Suppose there are a total number of N words in the training document collection (in our case, each tweet is a document) \(W = \{\omega_1, \omega_2, \ldots \omega_N\} \), and a total number of L categories \(C = \{c_1, c_2, \ldots, c_L\} \). If a word \(\omega_n \) appears in a category \(c \) for \(m_{unc} \) times, and appear in categories other than \(c \) for \(m_{unc} \) times, then based on the maximum likelihood estimation, the probability of this word in a specific category \(c \) is:

\[
p(w_n | c) = \frac{m_{n,c}}{\sum_{n=1}^{N} m_{n,c}}
\]

Similarly, the probability of this word in categories other than \(c \) is

\[
p(w_n | c') = \frac{m_{n,c'}}{\sum_{n=1}^{N} m_{n,c'}}
\]

Suppose there are a total number of M documents in the training set, and C of them are in category \(c \). Then the probability of category \(c \) is

\[
p(c) = \frac{C}{M}
\]

and the probability of other categories \(c' \) is

\[
p(c') = \frac{M-C}{M}
\]

For a document \(d_i \) in the testing set, there are \(K \) words \(W_{di} = \{\omega_1, \omega_2, \ldots, \omega_N\} \) and \(W_{di} \) is a subset of \(W \). The purpose is to classify this document into category \(c \) or \(c' \). Independence among each word assumed in this document, and any word \(w_{ik} \) conditioned on \(c \) or \(c' \) follows multinomial distribution. Therefore, according to Bayes’

\[
p(c | d_i) = \frac{p(d_i | c) \cdot p(c)}{p(d_i)} \propto \prod_{k=1}^{K} p(w_{ik} | c) \cdot p(c)
\]

Theorem, the probability that \(di \) belongs to category \(c \) is

\[
p(c' | d_i) = \frac{p(d_i | c') \cdot p(c')}{p(d_i)} \propto \prod_{k=1}^{K} p(w_{ik} | c') \cdot p(c')
\]

In this implementation, if for a certain document, there is no category with a positive probability larger than \(T \), then assign the one category with the largest probability to this document. In addition, “others” is an exclusive category. A tweet is only assigned to “others” when “others” is the only category with probability larger than \(T \).

4.5 Support Vector Machine Algorithm
Transforming a multi-label classification problem into a set of independent binary classification problems via the “one-vs-all” scheme is a conceptually simple and computationally efficient solution for multi-label classification [18]. In this work, multi-label learning conducted under such a mechanism by using standard support vector machines (SVM) for the binary classification problems associated with each class. Given a labeled multi-label training set \(D = \{(x_i, y_i)\}N i=1 \), where \(x_i \) is the input feature vector for the \(i \)-th instance, and its label vector \(y_i \) is a \(+1, -1 \)-valued vector with length \(K \) such as \(K = |Y| \). If \(y_{ik} = 1 \), it indicates that the instance \(xi \) is assigned into the \(k \)-th class; otherwise, the instance does not belong to the \(k \)-th class. For the \(k \)-th class \((k = 1, \ldots , K) \), the binary SVM training is a standard quadratic optimization problem:

\[
\min_{w_k, b_k} \frac{1}{2} \|w_k\|^2 + C \sum_{i=1}^{N} \varepsilon_{ik}
\]

Subject to

\[
y_{ik} (w_k^T x_i + b_k) \geq 1 - \varepsilon_{ik}, \varepsilon_{ik} \geq 0, \forall i ;
\]

Where \(\{ik\} \) are the slack variables and \(C \) is the trade-off parameter. It maximizes the soft class separation margin. The model parameters \(w_k \) and \(b_k \) returned by this binary learning problem define a binary classifier associated with the \(k \)-th class:

\[
f_k(x_i) = w_k^T x_i + b_k.
\]

The set of binary classifiers from \(1, \ldots , K \) can be used independently to predict the label vector \(y \) for an unlabeled instance \(x \). The \(k \)-th component of the label vector \(y \) has value 1 if \(f_k(x) > 0 \), and has value -1 otherwise. The absolute value \(|f_k(x) | \) can be viewed as a confidence value for its prediction \(y_k \) on instance \(x \).

V. EXPERIMENTAL RESULT
This system uses approximately 1700 tweet of student downloaded from twitter which contain student emotions. Firstly system preprocesses the data than support vector machine as well as naïve bayes algorithm applied on data. Performance analysis is done using k-fold cross validation. It is also called as rotation validation. In this case k has taken as 5. Hence 1700 tweets data is divided in to 5 folds. Table II shows the cross validation result of SVM. Here 1700 dataset is divided in to 5 fold. In first iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 90.35. In second iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 90.14.
Table I shows the cross validation result of Naïve Bayes Algorithm. Here 1700 dataset is divided into 5 fold. In first iteration 270 tweets are considered as test set and remaining 1373 are training set accuracy of this iteration is 83.18. In second iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 83.34. In third iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 83.18. In forth iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 83.26. In fifth iteration 272 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 83.12. In third iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 90.48. In forth iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 90.16. In fifth iteration 273 tweets are considered as test set and remaining 1370 are training set accuracy of this iteration is 90.35.

Table 2. Cross validation result of svm.

<table>
<thead>
<tr>
<th>FOLD</th>
<th>TEST SUBJECT</th>
<th>TRAIN SUBJECT</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>273</td>
<td>1370</td>
<td>90.35</td>
</tr>
<tr>
<td>1</td>
<td>273</td>
<td>1370</td>
<td>90.14</td>
</tr>
<tr>
<td>2</td>
<td>273</td>
<td>1370</td>
<td>90.48</td>
</tr>
<tr>
<td>3</td>
<td>273</td>
<td>1370</td>
<td>90.16</td>
</tr>
<tr>
<td>4</td>
<td>273</td>
<td>1370</td>
<td>90.35</td>
</tr>
</tbody>
</table>

Table III shows the final result by taking average of above cross validation result. This table shows the accuracy, precision, recall and F1-measure of Naïve Bayes is 83.12, 83.35, 83.04 and 83.21 respectively and the accuracy, precision, recall and F1-measure of SVM is 90.35, 89.94, 90.00 and 90.30 respectively. Figure II shows that Support Vector Machine has better performance than Naïve Bayes algorithm. As accuracy, precision, recall and F1-Measure values of SVM are better as compared to Naïve Bayes.

VI. CONCLUSION

This project classifies the student tweets to understand their problems as well as positive things in their educational life. Database is a collection of tweets these tweets which depicts the information of student experiences in their educational life. The Tweets are stored in database. Preprocessing is done on tweets. Then classification techniques (Naïve Bayes and support vector Machine) are applied on data. In classification student tweets classified into seven categories. That is negative, sleeping problems, positive, diversity issues, Lack of social awareness, heavy study load, Struggle. Cross validation technique is used to evaluate performance of a system. Accuracy of naïve bayes algorithm in five iteration is 83.18, 83.34, 83.18, 83.26, and 83.12 respectively. Accuracy of SVM in five iteration is 90.35, 90.14, 90.48, 90.16, and 90.35 respectively. Finally average of 5 iteration result is calculated to evaluate performance of a system. Accuracy, Precision, Recall And F1-Measure of Naïve Bayes is 83.12, 83.25, 83.04 and 83.21 respectively and the Accuracy, Precision, Recall And F1-Measure of SVM is 90.35, 89.94, 90.00 and 90.30 respectively. Comparison of algorithm is done on the values of Accuracy, Precision, Recall, and F1-Measure and came to conclusion that Support Machine Algorithm gives more accurate prediction than Naïve Bayes Algorithm. Accuracy of Naïve Bayes is 83.12 % while Support Vector Machine is 90.35 %. Precision of Naïve Bayes is 83.25 % while Support Vector Machine is 89.94 %. Recall of Naïve Bayes is 83.04 % while Support Vector Machine is 90.00 %. F1-Measure of Naïve Bayes is 83.21 % while Support Vector Machine is 90.30 %.

V. REFERENCES

[15]. Thorsten Joachims,” Text Categorization with Support Vector Machines: Learning with Many Relevant Features” Universität Dortmund Informatik LS8, Baroper Str. 301 44221 Dortmund, Germany.

[19]. Ron Kohavi,” A Study of CrossValidation and Bootstrap for Accuracy Estimation and Model Selection”, appears in the International Joint Conference on Artificial Intelligence IJCAI.