Design and Analysis of Domestic Wind Mill Blades
Gajjala Naresh Kumar Reddy¹, C Raghunath Reddy²
M.Tech Student¹, HOD²
Department of Mechanical Engineering
Tadipathri Engineering College, Tadipathri, India

Abstract:
The optimum twist of a windmill blade is examined on the basis of elementary blade element theory. For a given wind speed and blade angular velocity, it is shown that the maximum power efficiency is achieved when the blade is twisted according to a program that depends upon the variation of the sectional lift and drag coefficients with angle of attack. Results for a typical airfoil cross-section show that the optimum angle of attack decreases from the maximum-lift-coefficient angle of attack at the blade root to greater than eighty percent of this value at the blade tip. The materials used were stainless steel, e-glass epoxy and gray cast iron and results were tabulated.

1. INTRODUCTION

In these modern days the population is rapidly increasing and consumption of power in various fields also increased. Hence, it is very essential to find for an alternative power generation techniques on which all the aspects of modern day technology mainly depends. In that we have non conventional power generation techniques such as solar power, wind power, tidal power which are eco-friendly, abundantly available in nature. Renewable energy has gained importance in the background of the debates and discussions on climate change all over the world. Resources are gaining importance in reducing global warming gas emissions as they do not depend on fossil fuel. In India at present more than 75% of the power generation depends on coal based thermal power plants. In the background of emerging global obligations to bring down emissions of gases responsible for global warming the Government of India has brought out promising legal provisions and policies to promote renewable energy. Here it will not be out of place to mention that India is the first country to have a separate ministry – Ministry for New and Renewable Energy (MNRE) – to promote renewable energy based power generation in the country. The utilization of wind energy for power generation purposes is becoming increasingly attractive and gaining a great share in the electrical power production market world-wide. Wind turbines were used long time ago, the very first electricity generating windmill operated in the UK was a battery charging machine installed in 1887 by James Blyth in Scotland. The first utility grid-connected wind turbine operated in the UK was built by the John Brown Company in 1954 in the Orkney Islands. Wind turbines are designed to exploit the wind energy that exists at a location. Virtually all modern wind turbines convert wind energy to electricity for energy distribution.

WIND TURBINES

A Wind Turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a Wind turbine or Wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a wind mill or wind pump. Similarly, it may refer to as a Wind charger when used for charging batteries. The modern wind turbine is a system that comprises three integral components with distinct disciplines of engineering science. The rotor component includes the blades for converting wind energy to an intermediate low speed rotational energy. The generator component includes the electrical generator, the control electronics, and most likely a gearbox component for converting the low speed rotational energy to electricity. The structural support component includes the tower for optimally situating the rotor component to the wind energy source.

Figure 1. wind turbine
The result of over a millennium of windmill development and modern engineering, today’s wind turbines are manufactured in a wide range of vertical and horizontal axis types. The smallest turbines are used for applications such as battery charging or auxiliary power on boats: while large grid connected arrays of turbines are becoming increasingly important sources of wind power produced commercial electricity.

TYPES OF WIND MILLS

Wind turbines are classified, in the basis of their axis in which the turbine rotates, into horizontal axis and vertical axis wind turbines. Because of the ability of the horizontal axis turbines to collect the maximum amount of wind energy for the time of day and season and to adjust their blades to avoid high wind storms; they are considered more common than vertical-axis turbines. Turbines that used in wind farms for commercial production of electric power these days are usually three-bladed and pointed into the wind by computer-controlled motors. This type is produced by the most common wind turbines manufacturers.

Horizontal Axis Wind Turbine (HAWT): Horizontal-axis wind turbines (HAWT) have the main rotor shaft and electrical
generator at the top of a tower, and must be pointed into the wind as shown in figure. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a servo motor. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator. Since a tower produces turbulence behind it, the turbine is usually positioned Upwind of its supporting tower.

Vertical Axis Wind Turbine (VAWT):

Vertical-axis wind turbines (VAWT) have the main rotor shaft arranged vertically as shown in figure. One of the main advantages of this Vertical axis rotor is that they do not have to be turned into the wind stream as the wind direction changes. Also, the generator and gearbox can be placed near the ground, using a direct drive from the rotor assembly to the ground-based gearbox, improving accessibility for maintenance. When a turbine is mounted on a rooftop the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of a rooftop mounted turbine tower is approximately 50% of the building height it is near the optimum for maximum wind energy and minimum wind turbulence. Wind speeds within the built environment are generally much lower than at exposed rural sites, noise may be a concern and an existing structure may not adequately resist the additional stress.

II. COMPOSITES

A composite material can be defined as a combination of two or more materials that results in better properties than those of the individual components, used alone. In contrast to metallic alloys, each material retains its separate chemical, physical and mechanical properties. The two constituents are reinforcement and a matrix. The main advantages of composite materials are their high strength and stiffness, combined with low density, when compared with bulk materials, allowing for a weight reduction in the finished part. The reinforcing phases provide the strength and stiffness, in most cases, the reinforcement is harder, stronger, and stiffer than the matrix. The reinforcement is usually a fiber or a particulate. Particulate composites have dimensions. They may be spherical, platelets, or any other regular or irregular geometry. Particulate composites tend to be much weaker and less stiff than continuous fiber composites, but they are usually much less expensive. Particulate reinforced composites usually contain less reinforcement (up to 40 to 50 volume percent) due to processing difficulties and brittleness. A fiber has a length that is much greater than its diameter. The length to diameter (l/d) ration is known as the aspect ratio and can vary greatly. Continuous fibers have long aspect ratios, while discontinuous fibers have short aspect ratio. Continuous fiber composites normally have a preferred orientation, while discontinuous fibers generally have a random orientation. Examples of continuous reinforcements include unidirectional, woven cloth, and helical winding, while examples of discontinuous reinforcements are chopped fibers and random mat. Continuous fiber composites are often made into laminates by stacking single Sheets of continuous fibers in different orientations to obtain the desired strength and stiffness properties with fiber volumes as high as 60 to 70 percent. Fibers produce high strength composites because of their small diameter; they contain far fewer defects (normally surface defects) compared to the material produced in bulk. As a general rule, the smaller the diameter of the fiber, the higher its strength, but often the cost increases as the diameter becomes smaller. In addition, smaller diameter high strength fibers have greater flexibility and are more amenable to fabrication process such as weaving or forming over radii. Typical fibers include glass, and carbon, which may be continuous or discontinuous. The continuous phase is the matrix, which is a polymer, metal or ceramic. Polymers have low strength and stiffness, and metals have intermediate strength and stiffness but high ductility, and ceramics have high strength and stiffness but are brittle. The matrix continuous phase performs several critical functions, including maintaining the fibers in the proper orientation and spacing and protecting them from abrasion and environment. In polymer and metal matrix composites that form a strong bond between the fiber and the matrix, the matrix transmits loads.
from the matrix to the fibers through shear loading at the interface. In ceramic matrix composites the objective is often to increase the toughness rather that the strength and stiffness. Therefore, a low interfacial strength bond is desirable.

GLASS FIBER REINFORCED POLYESTER (GFRP)
There are many types of composite materials and several methods of classifying them. One method is based on the matrix materials which include polymers, metals and ceramics. The other method is based on the reinforcement phase which has the shape of fiber, particulate and whisker. Whiskers are like fibers but their length is shorter. The bonding between the particles, fibers or whiskers and the matrix is also very important. In structural composites, polymeric molecules known as coupling agent are used. These molecules form bonds with the dispersed phase and become integrated into the continuous matrix phase as well. The most popular type of composite material is the fiber-reinforced polyester composites, in which continuous thin fibers of one material such as glass, carbon or natural fibers are embedded in a polyester matrix. They are also called glass fiber reinforced polyester (GFRP), carbon fiber reinforced polyester (CFRP) and natural fiber reinforced polyester (NFRP). The objective is usually to enhance strength, stiffness, fatigue, resistance, or strength to weight ratio by incorporating strong and stiff fibers in a softer, more ductile matrix. The usages of fiber reinforced polyesters are in airplanes, electronics components, automotives, rail ways and wagon systems and sporting equipments. Beside their desired mechanical properties, their resistance to corrosion is also a tempting factor to use these composite in different areas. Although they are sensitive to UV light, heat and moisture environments, good maintenance could increase their life time. In this chapter different phases of FRPs, the mechanical relationships between different components of FRPs, the mechanism of degradation and aging of FRPs and application of them is discussing.

Figure 3. Microstructure of glass fiber reinforced polyester composite.
The glass fibers are divided into three main classes E-glass, S-glass and C-glass. The E-glass is designated for electrical use and the S-glass for high strength. The C-glass is for high corrosion resistance, and it is uncommon for civil engineering application. Of the three fibers, the E-glass is the most common reinforcement material used in civil and industrial structures. It is produced from lime-alumina-borosilicate which can be easily obtained from abundance of raw materials like sand. The fibers are drawn into very fine filaments with diameters ranging from 2 to 13 X 10^-6 m. The glass fiber strength and modulus can degrade with increasing temperature. Although the glass material creeps under a sustained load, it can be designed to perform satisfactorily. The fiber itself is regarded as an isotropic material and has a lower thermal expansion coefficient than that of steel. There are also the other fiber glasses which are used for FRP reinforcement as well as; - A-glass, soda lime silicate glasses used where the strength, durability, and good electrical resistivity of E-glass are not required. - D-glass, borosilicate glasses with a low dielectric constant for electrical applications. - ECR-glass, calcium alumina silicate glasses with a maximum alkali content of 2 wt. % used where strength, electrical resistivity, and acid corrosion resistance are desired. - AR-glass, alkali resistant glasses composed of alkali zirconium silicates used in cement Substrates and concrete. - R-glass, calcium alumina silicate glasses used for reinforcement where added strength and acid corrosion resistance are required. - S-2-glass, magnesium alumina silicate glasses used for textile substrates or reinforcement in composite structural applications which require high strength, Modulus, and stability under extreme temperature and corrosive environments.

BUCKLING LOAD
Thin stricures subject to compression loads that haven’t achieved the material strength limits can show failure mode is called buckling. Buckling is characterized by a sudden failure of structural member subjected to high compressive stress, where the actual compressive stress at the point of failure is less than the ultimate stresses that the material is capable of withstanding.

Figure 4. Buckling load
When a structure (subjected usually to compression) undergoes visibly large displacements transverse to the load then it is said to buckle. Buckling may be demonstrated by pressing the opposite edges of a flat sheet of cardboard towards one another. For small loads the process is elastic since buckling displacements disappear when the load is removed. Local buckling of plates or shells is indicated by the growth of bulges, waves or ripples, and is commonly encountered in the component plates of thin structural members. Buckling proceeds in manner which may be either:

- **stable** - In which case displacements increase in a controlled fashion as loads are increased, i.e. the structure’s ability to sustain loads is maintained, or
- **unstable** - In which case deformations increase instantaneously, the load carrying capacity nose- dives and the structure collapses catastrophically.

Neutral equilibrium is also a theoretical possibility during buckling - this is characterized by deformation increase without change in load. Buckling and bending are similar in that they both involve bending moments. In bending these moments are substantially independent of the resulting deflections, whereas in buckling the moments and deflections are mutually inter-dependent - so moments, deflections and stresses are not proportional to loads. If buckling deflections become too large then the structure fails - this is
a geometric consideration, completely divorced from any material strength consideration. If a component or part thereof is prone to buckling then its design must satisfy both strength and buckling safety constraints - that is why we now examine the subject of buckling.

III. COMPOSITE MATERIALS

A composite material is usually made up of at least two materials out of which one is the binding material, also called matrix and the other is the reinforcement material. By definition, composite materials consist of two or more constituents with physically separable phases. Composites are materials that comprise strong load carrying material (known as reinforcement) imbedded in weaker material (known as matrix). Reinforcement provides strength and rigidity, helping to support structural load. The matrix or binder maintains the position and orientation of the reinforcement. Significantly, constituents of the composites retain their individual, physical and chemical properties yet together they produce a combination of qualities which individual constituents would be incapable of producing alone. The reinforcement may be platelets, particles or fibers and are usually added to improve mechanical properties such as stiffness, strength and toughness of the matrix material.

Overview of Composite Materials:

Composites are made up of individual materials referred to as constituent materials. There are two main categories of constituent materials: matrix and reinforcement. At least one portion of each type is required. The matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. The reinforcements impart their special mechanical and physical properties to enhance the matrix properties. A synergism produces material properties unavailable from the individual constituent materials, while the wide variety of matrix and strengthening materials allows the designer of the product or structure to choose an optimum combination. Engineered composite materials must be formed to shape. The matrix material can be introduced to the reinforcement before or after the reinforcement material is placed into the mould cavity or onto the mould surface. The matrix material experiences a melding event, after which the part shape is essentially set. Depending upon the nature of the matrix material, this melding event can occur in various ways such as chemical polymerization or solidification from the melted state. A variety of molding methods can be used according to the end-item design requirements. The principal factors impacting the methodology are the natures of the chosen matrix and reinforcement materials. Another important factor is the gross quantity of material to be produced. Large quantities can be used to justify high capital expenditures for rapid and automated manufacturing technology. Small production quantities are accommodated with lower capital expenditures but higher labor and tooling costs at a correspondingly slower rate. Many commercially produced composites use a polymer matrix material often called a resin solution. There are many different polymers available depending upon the starting raw ingredients. There are several broad categories, each with numerous variations. The most common are known as polyester, vinyl ester, epoxy, phenol, polyimide, polyamide, polypropylene, PEEK and others.

Advantages of Composites:

Light Weight - Composites are light in weight, compared to most woods and metals. Their lightness is important in automobiles and aircraft, for example, where less weight means better fuel efficiency (more miles to the gallon). People who design airplanes are greatly concerned with weight, since reducing a craft’s weight reduces the amount of fuel it needs and increases the speed it can reach. Some modern airplanes are built with more composites than metal including the new Boeing 787, Dream liner. High Strength - Composites can be designed to be far stronger than aluminum or steel. Metals are equally strong in all directions. But composites can be engineered and designed to be strong in a specific direction. Corrosion Resistance - Composites resist damage from the weather and from harsh chemicals that can eat away at other materials. Composites are good choices where chemicals are handled or stored. Outdoors, they stand up to severe weather and wide changes in temperature. High-Impact Strength - Composites can be made to absorb the sudden force of a bullet, for instance, or the blast from an explosion. Because of this property, composites are used in bulletproof vests and panels, and to shield airplanes, buildings, and military vehicles from explosions. Dimensional Stability - Composites retain their shape and size when they are hot or cool, wet or dry. Wood, on the other hand, swells and shrinks as the humidity changes. Composites can be a better choice in situations demanding tight fits that do not vary. They are used in aircraft wings, for example, so that the wing shape and size do not change as the plane gains or losses altitude. Nonconductive - Composites are nonconductive, meaning they do not conduct electricity. This property makes them suitable for such items as electrical utility poles and the circuit boards in electronics. If electrical conductivity is needed, it is possible to make some composites conductive.

 Constituents of Composite Materials:

The constituents or materials that make up the composites are resins and reinforcements.

Resins:

The resin is an important constituent in composites. The two classes of resins are the thermoplastic and thermo sets. The most common resins used in composites are the unsaturated polyesters, epoxy, and vinyl esters. The least common ones are the polyurethanes and phenolics.

Reinforcements:

The reinforcements are solid part of the composites, which are reinforced in to the matrix. They determine the strength and stiffness of the composites. Most common reinforcements are fibers, particles and whiskers. Fiber reinforcements are found in both natural and synthetic forms. Fiber composite was the very first form of composites, using natural fiber such as straw was reinforced in clay to make bricks that were used for building.

Fibre Reinforced Polymer:

Fibre-reinforced plastic (FRP) (also fibre-reinforced polymer) is a composite material made of a polymer matrix reinforced with fibres. The primary function of fibre reinforcement is to carry load along the length of the fiber and to provide strength and stiffness in one direction. Fiber reinforced polymer composites are different from traditional construction materials like steel or aluminum. FRP composites are anisotropic (properties apparent in the direction of applied load) whereas steel or aluminum is isotropic (uniform properties in all directions, independent of applied load) and FRP have
maximum material stiffness to density ratio of 3.5 to 5 times that of aluminum or steel. The FRP have high fatigue endurance limits; can absorb impact energies, light weight and high strength. The main disadvantage of FRP materials is their relatively high cost compared to wood or unpainted low-carbon steel. Limited experience with FRP materials in the construction and design industry, FRP can be applied to strengthen the of buildings and bridges. FRPs are commonly used in the aerospace, automotive, marine, and construction industries.

Carbon fiber:
Carbon fiber–reinforced polymer, carbon fiber–reinforced plastic or carbonfibre–reinforced thermoplastic (CFRP, CRP or often simply carbon fiber, or even carbon), is an extremely strong and light fiber-reinforced polymer which contains carbon fibers. In CFRP the reinforcement is carbon fiber, which provides the strength and the matrix is usually a polymer resin, such as epoxy, to bind the reinforcements together. The reinforcement will give the CFRP its strength and rigidity. To produce carbon fiber, the carbon atoms are bonded together in crystals that are more or less aligned parallel to the long axis of the fiber as the crystal alignment gives the fiber high strength-to-volume ratio. The primary element of CFRP is a carbon filament, this is produced from a precursor polymer such as polyacrylonitrile (PAN), rayon, or petroleum pitch. For synthetic polymers such as PAN or rayon, the precursor is first spun into filament yarns, using chemical and mechanical processes to initially align the polymer atoms in a way to enhance the final physical properties of the completed carbon fiber.

Disadvantages: Recycling of carbon fibre is very difficult and it cannot melt like steel to reuse. Also another difficulty once a carbon fibre structure is dinted or cracked it be cannot beat back into shape like steel or add a fibre glass layer like panel beaters do. Once that dint or crack has occurred the entire structure's modulus and tensile strength and other factors are flawed and the part would need to be thrown away and replaced.

Applications:
Carbon Fibre in Aerospace engineering: Carbon fibre is also widely in aircraft components and structures, where its superior strength to weight ratio far exceeds that of any metal. 30% of all carbon fibre is used in the aerospace industry. The Airbus A350 XWB is built of 53% CFRP including wing and fuselage components, the Boeing 787 Dreamliner is built of 50%. The A380 is the first commercial airliner to have a central wing box made of CFRP and it is also the first to have a smoothly contoured wing cross section instead of the wings beings partitioned span-wise into sections. This flowing, continuous cross section optimizes aerodynamic efficiency. From helicopters to gliders, fighter jets to micro lights, carbon fibre is playing its part, increasing range and simplifying maintenance.

Sporting Goods:
Its application in sports goods ranges from the stiffening of running shoes to ice hockey stick, tennis racquets, golf clubs, squash and shells (hulls for rowing). It is also used in crash helmets too, for rock climbers, horse riders and motor cyclists and in any sport where there is a danger of head injury.

Other applications:
CFRP is also finding application in an increasing number of high-end products that require stiffness and low weight, these include:

Automobile Industry

- Laptop cases by an increasing number of manufacturers.
- Firearms use it to replace certain metal, wood, and fiberglass components but many of the internal parts are still limited to metal alloys as current reinforced plastics are unsuitable.
- High-performance radio-controlled vehicle and aircraft components such as helicopter rotor blades.
- Tripod legs, tent poles, fishing rods, billiards cues.
- Many other light and durable consumer items such as the handles of high-end knives.
- Poles for high reach, e.g. poles used by window cleaners and water fed poles.

Material Properties:

<table>
<thead>
<tr>
<th>Properties</th>
<th>Carbon Fibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s Modulus (GPa)</td>
<td>388</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.358</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>1600</td>
</tr>
<tr>
<td>Tensile Strength (GPa)</td>
<td>4.1</td>
</tr>
</tbody>
</table>

MODELLING
Introduction to Airfoil: An airfoil-shaped body moved through a fluid produces an aerodynamic force. The
component of this force perpendicular to the direction of motion is called lift. The component parallel to the called drag. Subsonic flight airfoils have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, often with asymmetric direction of motion is curvature of upper and lower surfaces. Foils of similar function designed with water as the working fluid are called hydrofoils

NACA profiles
The NACA airfoils are airfoil shapes for small power wind turbine blade developed by the National Advisory Committee for Aeronautics (NACA). The shape of the NACA airfoils is described using a series of digits following the word "NACA". The parameters in the numerical code can be entered into equations to precisely generate the cross-section of the airfoil.

Figure 6. Profile Geometry

Five-digit series
The NACA five-digit series describes more complex airfoil shapes:
1. The first digit, when multiplied by 0.15, gives the designed coefficient of lift (CL)
2. Second and third digits, when divided by 2, give, the location of maximum camber as a distance from the leading edge (as per cent of chord).
3. Fourth and fifth digits give the maximum thickness of the airfoil (as per cent of the chord).
For example, the NACA 77887 airfoil would give an airfoil with maximum thickness of 8% chord, maximum camber located at 7% chord, with a design lift coefficient of 0.15.

Four-digit series
The NACA four-digit wing sections define the profile by
1. First digit describing maximum camber as percentage of the chord.
2. Second digit describing the distance of maximum camber from the airfoil leading edge in tens of Percents of the chord.
3. Last two digits describing maximum thickness of the airfoil as percent of the chord.
For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. Four-digit series airfoils by default have maximum thickness at 30% of the chord (0.3 chords) from the leading edge. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio; it is 15% as thick as it is long.

1-series
A new approach to airfoil design pioneered in the 1930s in which the airfoil shape was mathematically derived from the desired lift characteristics. Prior to this, airfoil shapes were first created and then had their characteristics measured in a wind tunnel. The 1-series airfoils are described by five digits in the following sequence:
1. The number "1" indicating the series
2. One digit describing the distance of the minimum pressure area in tens of percent of chord.
3. A hyphen.

Figure 7. Airfoil profiles
4. One digit describing the lift coefficient in tenths.
5. Two digits describing the maximum thickness in percent of chord.
For example, the NACA 16-123 airfoil has minimum pressure 60% of the chord back with a lift coefficient of 0.1 and maximum thickness of 23% of the chord.

6-series
An improvement over 1-series airfoils with emphasis on maximizing laminar flow. The airfoil is described using six digits in the following sequence:
1. The number "6" indicating the series.
2. One digit describing the distance of the minimum pressure area in tens of percent of chord.
3. The subscript digit gives the range of lift coefficient in tenths above and below the design lift coefficient in which favorable pressure gradients exist on both surfaces.
4. A hyphen.
5. One digit describing the design lift coefficient in tenths.
6. Two digits describing the maximum thickness as percent of chord.
For example, the NACA 612-315 a=0.5 has the area of minimum pressure 10% of the chord back, maintains low drag 0.2 above and below the lift coefficient of 0.3, has a maximum thickness of 15% of the chord, and maintains laminar flow over 50% of the chord.

7-series
Further advancement in maximizing laminar flow achieved by separately identifying the low pressure zones on upper and lower surfaces of the airfoil. The airfoil is described by seven digits in the following sequence:
1. The number "7" indicating the series.
2. One digit describing the distance of the minimum pressure area on the upper surface in tens of percent of chord.
3. One digit describing the distance of the minimum pressure area on the lower surface in tens of percent of chord.
4. One letter referring to a standard profile from the earlier NACA series.
5. One digit describing the lift coefficient in tenths.
6. Two digits describing the maximum thickness as percent of chord.
7. "a=\cdot\cdot\cdot" followed by a decimal number describing the fraction of chord over which laminar flow is maintained. a=1 is the default if no value is given.
For example, the NACA 712A315 has the area of minimum pressure 10% of the chord back on the upper surface and 20% of the chord back on the lower surface, uses the standard "A" profile, has a lift coefficient of 0.3, and has a maximum thickness of 15% of the chord.

8-series
Supercritical airfoils designed to independently maximize airflow above and below the wing. The numbering is identical to the 7-series airfoils except that the sequence begins with an "8" to identify the series.

NACA 63-215 profile:
Details of aerofoil profile
Max thickness 15% at 34.9%, Max camber 2.2% at 50% chord

Figure : NACA 63-215 airfoil profile

Figure.8. Blade Basic Drawing

Blade Model Developed in Pro/E:

Figure.9. Blade profile

Figure.10. wire frame

Figure.11. a: pro-E solid model

ANALYSIS IN ANSYS:
Analysis is carried at various loads

Figure.12.(b): pro-E solid model

ANALYSIS IN ANSYS:

Figure.13. ANSYS- Imported geometry

Figure.14. ANSYS- Meshing

Figure.15. ANSYS- Fixed support

Load 10000N

Figure.16. Total Deformation
Figure 17. Equivalent stress

Load 6000N

Figure 18. Equivalent stress

Figure 19. Total Deformation

Load 5000N

Figure 20. Total Deformation

Figure 21. Equivalent stress

Load 4000N

Figure 22. Equivalent stress

Figure 23. Total Deformation

Load 3000N

Figure 24. Equivalent stress

Figure 25. Total Deformation

Figure 26. Mode 1
IV. RESULTS AND DISCUSSIONS

A Horizontal Axis Wind Turbine Blade has been Analyzed using Carbon Fiber by Static structural and modal analysis Process. The Aerofoil design of NACA-63215 has been considered. The Model is created using Pro-E with NACA-63215 blade profile of a small Wind Turbine blade and, it is analyzed through ANSYS 11 by applying different loads such as 3000N, 4000N, 5000N, 6000N, 10000N in the vertical direction to determine Structure behavior's Further the Deformation is identified based on the simulation results through ANSYS 11.

Table 1. Load Vs Deformation

<table>
<thead>
<tr>
<th>S.no</th>
<th>Applied load(N)</th>
<th>Equivalent stress(MPA)</th>
<th>Total Deformation (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3000</td>
<td>148.11</td>
<td>9.2223</td>
</tr>
<tr>
<td>2</td>
<td>4000</td>
<td>197.49</td>
<td>12.296</td>
</tr>
<tr>
<td>3</td>
<td>5000</td>
<td>246.86</td>
<td>15.37</td>
</tr>
<tr>
<td>4</td>
<td>6000</td>
<td>296.23</td>
<td>18.445</td>
</tr>
<tr>
<td>5</td>
<td>10000</td>
<td>493.71</td>
<td>30.741</td>
</tr>
</tbody>
</table>

V. CONCLUSION

The project work aims at Fabrication of Horizontal Axis Wind Turbine Blade, Buckling Effect Analysis of a Wind Turbine Blade which is main potential element in the Wind Turbines. The Wind Turbine Blades are subjected to high torque and Buckling Load which are the factors for the failures of the Blade. On this work we analyzed the Buckling Load failures and described along the Blade, and found that it can sustain up to 6700N of Load, Hence it can be helpful for the determination of various failures of Wind Turbine Blades.

VI. REFERENCES

[2]. “DELAMINATION BUCKLING ANALYSIS FOR DESIGN OF HORIZONTAL AXIS WIND TURBINE (HAWT) COMPOSITE BLADES” by H. Ghasemnejad, A. Maheri.

[6]. Text Book Power Plant Engineering by Domakunduvaran & Domakunduvaran by Dhanapat Rai Publications

[7]. Text Book Renewable Energy Sources, Twidell & Weir

[8]. WWW.google.co.in

[12]. Non-Conventional Energy Sources , G.D. Rai