Survey Paper on E-Services
Alka Jagtap¹, Swapnil Maske², Vibha Waghmare³, Shubhra Mukherjee⁴
Department of Information Technology, PGMCOE, Wagholi Savitribai Phule Pune University, India

Abstract:
The service oriented systems development is well under way, and the shape of future robust and agile service delivery and service aggregation technologies is taking focus. However, the distributed computing infrastructure on which these systems must be built is suffering from years of” worse is better thinking and an almost invisible vendor fragmentation of the Web Services and Business Process Modelling spaces. The basic technology of service deployment and business process implementation threatens to undermine efforts to build the next generation of Smart Services. It shows services futures, reveals the problems of the present angle of technologies, and points to some practical initiatives to find the way out of the particular services. Human migration is the movement by people from one place to another with the intentions of settling temporarily or permanently in the new location. The movement is often over long distances and from one country to another, but internal migration is also possible; indeed, this is the dominant form globally. Migration may be individuals, family units or in large groups. Nomadic movements are normally not regarded as migrations as there is no intention to settle in the new place and because the movement is generally seasonal. Only a few nomadic peoples have retained this form of lifestyle in modern times. Also, the temporary movement of people for the purpose of travel, tourism, pilgrimages, or the commute is not regarded as migration, in the absence of an intention to live and settle in the visited places.

Keywords: Service Provider, Resource on click, Micro service.

I. INTRODUCTION
The concept of e-service (Electronic Service) represents one prominent application of utilizing the use of information and communication technologies in different areas. However, providing an exact definition of e-service is hard to come by as researchers have been using different definitions to describe e-service. Despite these different definitions, it can be argued that they all agree about the role of technology in facilitating the delivery of services which make them more of electronic services. Enabling transactions through Internet thus becomes essential as a means to provide better flexibility and convenience to clients and further increasing efficiency of settlement of trades in the capital market. The more customer-oriented programs bring more benefits and satisfaction. Moving from the old paradigm of public services confined in official settings to virtual offices, services are made available for the citizen at their convenient points by setting and changing mechanisms such as virtual office, decentralization, public-private initiatives. The technological development has made radical change in this regard along with other public administration. The amount of e-services provided by the public sector for citizen is continuously increasing. Public e-services can be conceived as “electronic services which can be accessed. For example, via the Internet, TV or mobile devices.

II. LITERATURE SURVEY

In this paper, we proposed three EIRQ schemes based on an ADL to provide differential query services while protecting user privacy. In a cost-efficient cloud environment, a user can tolerate a certain degree of delay while retrieving information from the cloud to reduce costs. In this paper, we address two fundamental issues in such an environment: privacy and efficiency. We first review a private keyword-based file retrieval scheme that was originally proposed by Ostrovsky. Their scheme allows a user to retrieve files of interest from an untrusted server without leaking any information.

In this paper, we have proposed a novel framework of secure sharing of personal health records in cloud computing. Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health information could be exposed to those third party servers and to unauthorized parties. To assure the patients’ control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing.

In this paper, we address two fundamental issues in a cloud environment: privacy and efficiency. We first review a private keyword-based file retrieval scheme proposed by Ostrovsky et. al. Then, based on an aggregation and distribution layer (ADL), we present a scheme, termed efficient information retrieval for ranked query (EIRQ), to further reduce querying costs incurred in the cloud. Queries are classified into multiple ranks, where a higher ranked query can retrieve a higher percentage of matched files. Extensive evaluations have been conducted on an analytical model to examine the effectiveness of our scheme.
Smart city is a next-generation city planning. In the smart city, some value-added services such as energy saving and optimization of traffic are provided using wide variety of logs collected from various appliances and sensors. We are currently developing a smart city platform, called Scallop4SC, which supports collecting and processing the extremely large-scale log data. This system stores variety of logs on the HBase key-value store, and supports powerful data processing by Hadoop MapReduce. The goal of this paper is to propose service API of Scallop4SC. The API should be implemented as a Web service, which allows heterogeneous clients to access large-scale log (of energy, device and environment), as well as house configuration data of the smart city.

In this paper, after briefly discussing our test-based certification scheme for the cloud, we show a real certification process aimed to certify Open Stack, an open source IaaS solution for managing infrastructure resources. In particular, we first describe the testing activities executed to certify Open Stack for security and performance properties. We then illustrate the obtained results and the outcomes of the certification process.

III. PROPOSED SYSTEM

The proposed system is a web based application and android application which allows customer register their details. Users can browse through the details that are posted. Customers can search for services.

- Filter, search facility for customers according to their Required service.
- Daily updates via notifications and other communication media.
- All services are available on the single interface.
- Customer can save services according to their needs.
- Most recent services are displayed on the home page.
- Counting the number of times the customer is accessed by the website.
- Ease of posting services by users.
- Ease of communication between customer and service.

Project Flow:

- User Should Register First.
- Application Provider should register their services.
- User can Search required services and can contact with them on given address.
- User can easily get service providers information by using this application.
- By this application Service Provider has choice to accept work or not.
- It provides service information like plumber, electrician, home maintenance etc.
- Resource On click application will be helpful to all common people in society in very efficient manner.
- The main purpose behind developing this application is to provide all resource related information to common peoples in society.

IV. SYSTEM ARCHITECTURE

4.1 System Architecture:

4.1.1. Server

The server which realized the core algorithm and logical operation is core device. The server handles the data which come from kinds of ports calculates the result and gives response.

4.1.2. Database

The database is used to store a large scale of data which is considered to be a big amount of data. A database of information pertaining to the adolescent’s, Questionnaires and Recommender in the form of the database.

4.1.3. User

A user is a person who interacts with a system, typically through an interface, to extract some functional benefit. System user also defines the behavior of the system operations and how the
audience would interact with the system using pre-designed triggers. In order for the system to work on a larger scale using various databases system would have to create an interface that would be suitable for specific level of knowledge that the end user acquires.

4.2 Use Cases Relationship With Architecture Diagram:

FIGURE. 4.2. USE CASE DIAGRAM

Here,
User:
User Can Search their service can communicate with service provider directly.

System:

Contain database as well as server which are a part of model and controller in architecture diagram.

Service Provider:

Administrator of the system is responsible for monitoring health statistics of adolescents which is part of view in architecture diagram.

V. ADVANTAGES

- Anything anywhere in the area can be used in a few mouse clicks. Shoppers have no need for finding time or to take the effort of going in to a physical store and standing in line there.
- Differing from the competitors by providing completely new types of services to the customers.
- Enhancements of the supplements over the net.
- Reduced or Zero commuting.
- No travelling.
- Less stress due to traffic.
- Greater ability to focus on one task.
- Flexible schedule.

VI. APPLICATION

It can be used in government, telecom, e-commerce, science, education etc.

VII. CONCLUSION

This administration fundamentally concentrates on the ongoing virtual things. This application give security, secret and honesty of information .It additionally give adaptable information. In this application assets are been expressed such a route, to the point that to be helpful to average folks and can be effortlessly gotten to. E-Services is currently a set up method for arranging business. It spares time. We get administrations on ONE tick.
VIII. ACKNOWLEDGEMENTS

We take this opportunity to express our profound gratitude and deep regards to, Prof. Shubhra Mukherjee for exemplary guidance, monitoring and constant encouragement throughout the project. The blessing, help and guidance given by her shall time to time carry us a long way in the journey of life on which we are about to embark.

IX. REFERENCE

[1]. Cloudets: Cloud-Based Cognition for Large Streaming Data (year-2015) - George Baciu, Member, IEEE, Chenhui Li, Yunzhe Wang and Xiujun Zhang

[2]. Designing a Smart City Internet of Things Platform with Microservice Architecture (year 2015) - Alexandr Krylovskiy, Marco Jahn, Edoardo Patti, Fraunhofer FIT, Sankt Augustin, Germany Dept. of Control and Computer Engineering, Politecnico di Torino, Italy

[3]. Design and Implementation of Service API for Large-Scale House Log in Smart City Cloud (year-2012) - Kohei TAKAHASHI, Shintaro YAMAMOTO, Akihiro OKUSHI, Shinsuke MATSUMOTO, Masahide NAKAMURA

